Supplemetary Table S1: 72 Preeclampsia Candidate Genes Investigated and Resulting P-Values for Th Gene Chr Start End Full Gene

Total Page:16

File Type:pdf, Size:1020Kb

Supplemetary Table S1: 72 Preeclampsia Candidate Genes Investigated and Resulting P-Values for Th Gene Chr Start End Full Gene Supplemetary Table S1: 72 preeclampsia candidate genes investigated and resulting p-values for th Gene Chr Start End Full Gene Name LCT 2 136545415 1365947540 Lactase PER3 1 7784703 7845177 period_circadian_clock_3 NOS3 7 150990995 151014588 nitric_oxide_synthase_3 XPO5 6 43490068 43543812 exportin_5 LY9 1 160765864 160798045 lymphocyte_antigen_9 ERAP1 5 96760810 96808100 endoplasmic_reticulum_aminopeptidase_1 DPP7 9 137110542 137114718 dipeptidyl_peptidase_7 LNPEP 5 96935464 97037515 leucyl/cystinyl_aminopeptidase HS3ST2 16 22814177 22916338 heparan_sulfate_(glucosamine)_3_O_sulfotransferase_2 ERAP2 5 96875939 96919716 endoplasmic_reticulum_aminopeptidase_2 COL4A2 13 110307267 110513027 collagen_type_IV_alpha_2 SLC2A6 9 133471095 133479137 solute_carrier_family_2_(facilitated_glucose_transporter)_member TNFRSF14 1 2556366 2563829 tumor_necrosis_factor_receptor_superfamily_member_14 KDR 4 55078477 55125589 kinase_insert_domain_receptor SLC27A2 11 124933013 124960412 solute_carrier_family_37 COL4A1 13 110148963 110307149 collagen_type_IV_alpha_1 ACP5 19 11685475 11689801 acid_phosphatase_5_tartrate_resistant QRFPR 4 121329314 121381059 Pyroglutamylated_RFamide_Peptide_Receptor STOX2 4 183905356 184023526 storkhead_box_2 EDN1 6 12290363 12297194 endothelin_1 ACVR1C 2 157526767 157629005 activin_A_receptor_type_IC STOX1 10 68827541 68895432 storkhead_box_1 FLT1 13 28300344 28495095 fms_related_tyrosine_kinase_1 AGT 1 230702523 230714297 angiotensinogen MMP2 16 55478971 55506691 matrix_metallopeptidase_2 LMAN1 18 56995056 57026508 lectin_mannose_binding_1 GTF3C4 9 135545728 135565470 general_transcription_factor_IIIC_polypeptide_4 TGFB1 19 41330323 41353911 transforming_growth_factor_beta_1 LRP1B 2 140988996 142889270 Low Density Lipoprotein Receptor-Related Protein 1B ISPD 7 16127152 16460947 isoprenoid_synthase_domain_containing NOS2 17 27756766 27800499 nitric_oxide_synthase_2 PDK4 7 95583499 95596491 pyruvate_dehydrogenase_kinase_isozyme_4 INHA 2 219572195 219575713 inhibin_alpha IL10 1 206767602 206772494 interleukin_10 PTGS2 1 186671791 186680427 prostaglandin_endoperoxide_synthase_2 ACVR1 2 157736449 157875862 activin_A_receptor_type_I ACVR2A 2 147844517 147930824 activin_A_receptor_type_IIA INHBB 2 120346143 120351808 inhibin_beta_B GCA 2 163200583 163219148 Grancalcin FST 5 53480409 53487134 follistatin TNF 6 31575567 31578336 tumor_necrosis_factor VEGFA 6 43770707 43784949 vascular_endothelial_growth_factor_A SHH 7 155799986 155812273 sonic_hedgehog IL6 7 22725884 22732002 interleukin_6 INHBA 7 41685114 41703108 inhibin_beta_A SERPINE1 7 101127089 101139266 serpin_peptidase_inhibitor_clade_E CD72 9 35609533 35619542 CD72_molecule ENG 9 127815017 127854636 endoglin QRFP 9 130892702 130896812 Pyroglutamylated_RFamide_Peptide CYP17A1 10 102830531 102837533 cytochrome_P450_family_17_subfamily_A_polypeptide_1 FAM21A 10 51827684 51893269 family_with_sequence_similarity_21_member_A INS 11 2159779 2161341 Insulin ADIPOR2 12 1800247 1897845 adiponectin_receptor_2 IFNG 12 68154768 68159747 interferon_gamma BMF 15 40380091 40401085 Bcl2_modifying_factor CEP152 15 49030135 49103343 centrosomal_protein_152kDa CDH1 16 68737225 68835548 cadherin_1_type_1_E_cadherin ALDOA 16 30076994 30081741 aldolase_A_fructose_bisphosphate SLC2A4 17 7281667 7288257 solute_carrier_family_2_(facilitated_glucose_transporter)_member ANKFY1 17 4066665 4167142 ankyrin_repeat_and_FYVE_domain_containing_1 CYGB 17 74523430 74533987 cytoglobin SMAD7 18 48919853 48950711 SMAD_family_member_7 DBP 19 48630030 48637438 D_site_of_albumin_promoter_(albumin_D_box)_binding_protein GPI 19 34856032 34893318 glucose_6_phosphate_isomerase P2RY11 19 10222197 10226064 purinergic_receptor_P2Y_G_protein_coupled_11 AVP 20 3082556 3084724 arginine_vasopressin OXT 20 3071620 3072517 oxytocin/neurophysin_I_prepropeptide_ MMP9 20 46008908 46016561 matrix_metallopeptidase_9 TEF 22 41777933 41795332 thyrotrophic_embryonic_factor XIAP X 123859812 123913976 X_linked_inhibitor_of_apoptosis_E3_ubiquitin_protein_ligase RENBP X 153200722 153210232 renin_binding_protein ZDHHC9 X 128937264 128977910 zinc_finger_DHHC_type_containing_9 Table S2: Categorization of variants by sequencing platform and there intersection. Sequencing Platform Variant Function Illumina TruSeq AmpliSeq Intersected 49,622 (22 30,172 (5 Synonymous 47,852 (9 splicing) splicing) splicing) 77,770 (36 62,883 (17 31,007 (9 Nonsynonymous splicing) splicing) splicing) Intronic 1315 114,842 62 22,034 (18 Exonic non-coding RNA 662 (2 splicing) 131 splicing) 3’UTR 102,646 7,012 3,866 5’UTR 27,613 5,346 2,602 Mixed 3’5’ 14 19 0 Downstream 185 446 3 Upstream 226 1148 13 Upstream/Downstream 29 63 0 Stop/Gain 1253 1088 334 Stop/Loss 125 (1 splicing) 68 29 Unclassified Exonic 1796 1473 Intergenic 1186 144 45 Intronic non-coding RNA 4589 3435 155 Splicing 93 673 8 Other 12 2 0 Total 290,607 247,144 69,298 rs1048944 5 34824555RAI14 exonic 0.475 0.4 rs78544176 11 93457532CEP295 exonic 0.047917 0.01 rs9358799 6 24806594FAM65B UTR3 0.433333 0.3 rs1783978 11 57463500ZDHHC5 exonic 0.389584 0.6 rs3744204 17 72999773CDR2L exonic 0.239584 0.2 rs1062600 20 56137798PCK1 exonic 0.395834 0.2 rs111437424 16 1464636UNKL exonic 0.0375 0.9 rs117519030 19 47774680CCDC9 exonic 0.041667 0.00 rs77099580 3 183752964HTR3D;HTR3D exonic;splicing 0.029167 0.01 rs45626541 19 37677748ZNF585B exonic 0.339583 0.2 rs115553646 5 132150132SOWAHA exonic 0.054166 0.1 rs6413437 14 20872863TEP1 exonic 0.054166 0.1 rs34110867 1 232564162SIPA1L2 exonic 0.027083 0.06 rs1128013 22 43195147ARFGAP3 exonic 0.364584 0.3 rs7246479 19 55824332TMEM150B exonic 0.370833 0.5 rs36125344 22 46655779PKDREJ exonic 0.097917 0.06 rs1141684 16 2014591RPS2 exonic 0.04375 0.1 rs144634106 5 139422232NRG2 exonic 0.05625 0.02 rs7114668 11 4842925OR51F2 exonic 0.04375 0.08 rs6971819 7 128315889FAM71F2 exonic 0.1375 0.1 rs2230380 12 26806955ITPR2 exonic 0.270834 0.1 rs200551840 16 74455190CLEC18B UTR5 0.108333. rs4757987 11 5906205OR52E4 exonic 0.34375 0.4 rs10742809 11 5862532OR52E6 exonic 0.26875 0.3 rs55888789 9 139849843LCN12 exonic 0.054166 0.0 rs138379333 1 85559205WDR63 exonic 0.016667 0.003 rs302646 11 87908448RAB38 exonic 0.122916 0.7 rs954144 15 78730591IREB2 UTR5 0.297916 0.3 rs1555048 22 50688348HDAC10 exonic 0.266666 0.8 rs7511651 1 16070871TMEM82 exonic 0.066667 0.1 rs7560668 2 74300717TET3 exonic 0.314584 0.3 rs17373874 4 155411939DCHS2 exonic 0.466666 0. rs56261530 19 4280207SHD exonic 0.104166 0.03 rs4357719 11 5862653OR52E6 exonic 0.329166 0.3 rs4495918 11 5862937OR52E6 exonic 0.329166 0.3 rs10769272 11 5862984OR52E6 exonic 0.329166 0.3 rs4362173 11 5863013OR52E6 exonic 0.329166 0.3 rs10742810 11 5863113OR52E6 exonic 0.329166 0.3 rs1799793 19 45867259ERCC2 exonic 0.297916 0.1 rs78448370 8 142446937MROH5 exonic 0.10625 0.07 rs1135045 16 23489711GGA2 exonic 0.158333 0.6 rs8477 17 79618059PDE6G UTR3 0.2875 0.5 rs141851604 11 5799498OR52N5 exonic 0.008334. rs2278159 18 72178161CNDP2 exonic 0.14375 0.2 rs2075690 19 51519236KLK10 exonic 0.341666 0.5 rs2286873 17 1377943MYO1C exonic 0.285417 0.4 rs554202 11 75428958MOGAT2 exonic 0.3625 0.3 rs220130 21 43531808UMODL1 exonic 0.160416 0.1 rs2961149 7 143807515OR2A2 exonic 0.277083 0 rs28546127 1 22200473HSPG2 exonic 0.072916 0.06 rs2229481 1 22200998HSPG2 exonic 0.072916 0.06 rs2229952 7 81667468CACNA2D1 exonic 0.060416 0.0 rs1056806 1 110233147GSTM1 exonic 0.1375 0.2 rs7893917 10 90585819ANKRD22 exonic 0.322916 0.3 rs35076349 10 7759679ITIH2 exonic 0.05625 0.04 rs118117962 9 140002995MAN1B1 exonic 0.025 0.01 rs267738 1 150940625CERS2 exonic 0.2 0.06 rs2036772 12 102517753PARPBP exonic 0.170833 0. rs33990195 3 113320477SIDT1 exonic 0.077083 0.04 rs2278426 19 11350488C19orf80 exonic 0.041667 0.1 rs1129777 10 91468925KIF20B exonic 0.1625 0.2 rs3758388 10 91488979KIF20B exonic 0.1625 0.2 rs2291439 8 95419698RAD54B exonic 0.297916 0.4 rs41265007 1 156021079UBQLN4 exonic 0.05 0.01 rs4072568 15 80884025ARNT2 exonic 0.108333 0.1 rs15350 18 77211764NFATC1 exonic 0.160416 0.2 rs4682752 3 44775962ZNF501 exonic 0.485416 0.6 rs3736508 11 45975130PHF21A exonic 0.03125 0. rs1051630 5 870619BRD9 exonic 0.070833 0.1 rs41274386 9 96212813FAM120AOS exonic 0.047917 0.02 rs2481598 9 71650752FXN exonic 0.01875 0.9 rs61731692 22 36537725APOL3 exonic 0.102083 0.09 rs2075643 14 51383432PYGL exonic 0.1375 0.2 rs35092547 19 9068990MUC16 exonic 0.03125 0.009 rs35346115 19 9071916MUC16 exonic 0.03125 0.009 rs7216 17 19578873ALDH3A2 exonic 0.345834 0.6 rs7256494 19 54849481LILRA4 exonic 0.252084 0.3 rs12313 10 134017295DPYSL4 exonic 0.170833 0.8 rs704219 12 22354921ST8SIA1 exonic 0.13125 0.8 rs2187016 8 101648164SNX31 exonic 0.172917 0. rs2811741 9 139732331RABL6 exonic 0.16875 0.8 rs2230325 1 52399021RAB3B exonic 0.035416 0.05 rs78451460 16 10769943TEKT5 exonic 0.022916 0.01 rs139376072 1 231335983TRIM67 exonic 0.01875 0.009 rs9898751 17 7950952ALOX15B exonic 0.360416 0.4 rs17689863 2 75882399MRPL19 exonic 0.24375 0.1 rs639905 6 4069685FAM217A exonic 0.222916 0.2 rs1078461 4 185940952HELT exonic 0.08125 0.1 rs78637028 16 3640784SLX4 exonic 0.075 0.04 rs59939128 16 3640785SLX4 exonic 0.075 0.06 rs113490934 16 3650987SLX4 exonic 0.075 0.05 rs79842542 16 3656625SLX4 exonic 0.075 0.05 rs61735644 18 55104016ONECUT2 exonic 0.058334 0.1 rs13447182 22 19467462CDC45 UTR5 0.06875 0.04 rs3822355 5 140186979PCDHA4 exonic 0.422916 0.3 rs2245431 21 30357163LTN1 exonic 0.095834 0. rs5757465 22 39477123APOBEC3G exonic 0.377084 0.2 rs7571 13 25000617PARP4 exonic 0.25625 0.4 rs848547 2 36704144CRIM1 exonic 0.470834 0.6 rs136569 22 45767455SMC1B exonic 0.385416 0. rs34169738 10
Recommended publications
  • Whole Genome Sequencing of Six Dog Breeds from Continuous Altitudes Reveals Adaption to High-Altitude Hypoxia
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Whole genome sequencing of six dog breeds from continuous altitudes reveals adaption to high-altitude hypoxia Xiao Gou#1,2, Zhen Wang#3,4, Ning Li#2, Feng Qiu#4,5, Ze Xu 5, Dawei Yan 1, Shuli Yang 1 , Jia Jia 4, Xiaoyan Kong 1, Zehui Wei 6, Shaoxiong Lu 1, Linsheng Lian 1, Changxin Wu 2, Xueyan Wang 1, Guozhi Li 1, Teng Ma 1, Qiang Jiang 1, Xue Zhao 1, Jiaqiang Yang 1, Baohong Liu 5, Dongkai Wei 5, Hong Li 3,4, Jianfa Yang 1, Yulin Yan 1, Guiying Zhao 1, Xingxing Dong 1, Mingli Li 1, Weidong Deng 1, Jing Leng 1, Chaochun Wei 4,8, Chuan Wang 7, Huaming Mao*1, Hao Zhang*2, Guohui Ding*3,4, Yixue Li*3,4,8,9 1. College of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Northern district, Kunming 650201, China 2. College of Animal Science and Technology, China Agricultural University, 17 East Qinghua Road, Beijing 100083, China 3. Key Laboratory of Systems Biology, Shanghai Institutes for biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China 4. Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai 201203, China 5. EG Information Technology Enterprise (EGI), Encode Genomics Biotechnology Co., Ltd., 100 Qinzhou Road, Shanghai 200235, China 6. College of Animal Science and Technology, Northwest Agricultural and Forestry University, No.3 Taicheng Road, Yangling 712100, China 7. National Center for Protein Science • Shanghai, National Facility for Protein Science in Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press 8.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Genetic Characterization of Greek Population Isolates Reveals Strong Genetic Drift at Missense and Trait-Associated Variants
    ARTICLE Received 22 Apr 2014 | Accepted 22 Sep 2014 | Published 6 Nov 2014 DOI: 10.1038/ncomms6345 OPEN Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants Kalliope Panoutsopoulou1,*, Konstantinos Hatzikotoulas1,*, Dionysia Kiara Xifara2,3, Vincenza Colonna4, Aliki-Eleni Farmaki5, Graham R.S. Ritchie1,6, Lorraine Southam1,2, Arthur Gilly1, Ioanna Tachmazidou1, Segun Fatumo1,7,8, Angela Matchan1, Nigel W. Rayner1,2,9, Ioanna Ntalla5,10, Massimo Mezzavilla1,11, Yuan Chen1, Chrysoula Kiagiadaki12, Eleni Zengini13,14, Vasiliki Mamakou13,15, Antonis Athanasiadis16, Margarita Giannakopoulou17, Vassiliki-Eirini Kariakli5, Rebecca N. Nsubuga18, Alex Karabarinde18, Manjinder Sandhu1,8, Gil McVean2, Chris Tyler-Smith1, Emmanouil Tsafantakis12, Maria Karaleftheri16, Yali Xue1, George Dedoussis5 & Eleftheria Zeggini1 Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P ¼ 2.3 Â 10 À 26). We replicate this association in a second set of Pomak samples (combined P ¼ 2.0 Â 10 À 36).
    [Show full text]
  • Table S3. RAE Analysis of Well-Differentiated Liposarcoma
    Table S3. RAE analysis of well-differentiated liposarcoma Model Chromosome Region start Region end Size q value freqX0* # genes Genes Amp 1 145009467 145122002 112536 0.097 21.8 2 PRKAB2,PDIA3P Amp 1 145224467 146188434 963968 0.029 23.6 10 CHD1L,BCL9,ACP6,GJA5,GJA8,GPR89B,GPR89C,PDZK1P1,RP11-94I2.2,NBPF11 Amp 1 147475854 148412469 936616 0.034 23.6 20 PPIAL4A,FCGR1A,HIST2H2BF,HIST2H3D,HIST2H2AA4,HIST2H2AA3,HIST2H3A,HIST2H3C,HIST2H4B,HIST2H4A,HIST2H2BE, HIST2H2AC,HIST2H2AB,BOLA1,SV2A,SF3B4,MTMR11,OTUD7B,VPS45,PLEKHO1 Amp 1 148582896 153398462 4815567 1.5E-05 49.1 152 PRPF3,RPRD2,TARS2,ECM1,ADAMTSL4,MCL1,ENSA,GOLPH3L,HORMAD1,CTSS,CTSK,ARNT,SETDB1,LASS2,ANXA9, FAM63A,PRUNE,BNIPL,C1orf56,CDC42SE1,MLLT11,GABPB2,SEMA6C,TNFAIP8L2,LYSMD1,SCNM1,TMOD4,VPS72, PIP5K1A,PSMD4,ZNF687,PI4KB,RFX5,SELENBP1,PSMB4,POGZ,CGN,TUFT1,SNX27,TNRC4,MRPL9,OAZ3,TDRKH,LINGO4, RORC,THEM5,THEM4,S100A10,S100A11,TCHHL1,TCHH,RPTN,HRNR,FLG,FLG2,CRNN,LCE5A,CRCT1,LCE3E,LCE3D,LCE3C,LCE3B, LCE3A,LCE2D,LCE2C,LCE2B,LCE2A,LCE4A,KPRP,LCE1F,LCE1E,LCE1D,LCE1C,LCE1B,LCE1A,SMCP,IVL,SPRR4,SPRR1A,SPRR3, SPRR1B,SPRR2D,SPRR2A,SPRR2B,SPRR2E,SPRR2F,SPRR2C,SPRR2G,LELP1,LOR,PGLYRP3,PGLYRP4,S100A9,S100A12,S100A8, S100A7A,S100A7L2,S100A7,S100A6,S100A5,S100A4,S100A3,S100A2,S100A16,S100A14,S100A13,S100A1,C1orf77,SNAPIN,ILF2, NPR1,INTS3,SLC27A3,GATAD2B,DENND4B,CRTC2,SLC39A1,CREB3L4,JTB,RAB13,RPS27,NUP210L,TPM3,C1orf189,C1orf43,UBAP2L,HAX1, AQP10,ATP8B2,IL6R,SHE,TDRD10,UBE2Q1,CHRNB2,ADAR,KCNN3,PMVK,PBXIP1,PYGO2,SHC1,CKS1B,FLAD1,LENEP,ZBTB7B,DCST2, DCST1,ADAM15,EFNA4,EFNA3,EFNA1,RAG1AP1,DPM3 Amp 1
    [Show full text]
  • 3'HS1 CTCF Binding Site in Human Β-Globin Locus Regulates Fetal
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444713; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 3’HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression Pamela Himadewi1,8, Xue Qing David Wang1,8, Fan Feng3,8, Haley Gore1, Yushuai Liu1, Lei Yu2, Jie Liu3, Ryo Kurita4, Yukio Nakamura5,6, Gerd Pfeifer1, and Xiaotian Zhang1,7. 1. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA 2. Cell and Development Biology, University of Michigan, Ann Arbor, MI, USA 3. Department of Computational Biology, University of Michigan, Ann Arbor, MI, USA 4. Department of Research and Development, Central Blood Institute, Japanese Red Cross Society,Tokyo,Japan. 5. Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan 6. Faculty of Medicine, University of Tsukuba, Tsukuba, Japan 7. Current Address: Department of Pathology, University of Michigan 8. These authors contributed equally to the work Correspondence should be directed to: Xiaotian Zhang [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444713; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Summary Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia.
    [Show full text]
  • Genome-Wide Screening Identifies Genes and Biological Processes
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 10-12-2018 Genome-Wide Screening Identifies Genes and Biological Processes Implicated in Chemoresistance and Oncogene-Induced Apoptosis Tengyu Ko Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Cancer Biology Commons, Cell Biology Commons, and the Genomics Commons Recommended Citation Ko, Tengyu, "Genome-Wide Screening Identifies Genes and Biological Processes Implicated in Chemoresistance and Oncogene- Induced Apoptosis" (2018). LSU Doctoral Dissertations. 4715. https://digitalcommons.lsu.edu/gradschool_dissertations/4715 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. GENOME-WIDE SCREENING IDENTIFIES GENES AND BIOLOGICAL PROCESSES IMPLICATED IN CHEMORESISTANCE AND ONCOGENE- INDUCED APOPTOSIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical and Veterinary Medical Sciences through the Department of Comparative Biomedical Sciences by Tengyu Ko B.S., University of California, Santa Barbara 2010 December 2018 ACKNOWLEDGEMENTS I would like to express my sincerest gratitude to my major supervisor Dr. Shisheng Li for giving me the opportunity to join his team and the freedom to pursue projects. I appreciate all of his thoughts and efforts. Truly, none of these findings would be possible without his supervisions, supports, insightful discussions, and patience.
    [Show full text]
  • The Hypothalamus As a Hub for SARS-Cov-2 Brain Infection and Pathogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis Sreekala Nampoothiri1,2#, Florent Sauve1,2#, Gaëtan Ternier1,2ƒ, Daniela Fernandois1,2 ƒ, Caio Coelho1,2, Monica ImBernon1,2, Eleonora Deligia1,2, Romain PerBet1, Vincent Florent1,2,3, Marc Baroncini1,2, Florence Pasquier1,4, François Trottein5, Claude-Alain Maurage1,2, Virginie Mattot1,2‡, Paolo GiacoBini1,2‡, S. Rasika1,2‡*, Vincent Prevot1,2‡* 1 Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, DistAlz, UMR-S 1172, Lille, France 2 LaBoratorY of Development and PlasticitY of the Neuroendocrine Brain, FHU 1000 daYs for health, EGID, School of Medicine, Lille, France 3 Nutrition, Arras General Hospital, Arras, France 4 Centre mémoire ressources et recherche, CHU Lille, LiCEND, Lille, France 5 Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and ImmunitY of Lille (CIIL), Lille, France. # and ƒ These authors contriButed equallY to this work. ‡ These authors directed this work *Correspondence to: [email protected] and [email protected] Short title: Covid-19: the hypothalamic hypothesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • OR51B5 (NM 001005567) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC219837L3 OR51B5 (NM_001005567) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: OR51B5 (NM_001005567) Human Tagged ORF Clone Tag: Myc-DDK Symbol: OR51B5 Synonyms: HOR5'Beta5; OR11-37 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC219837). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001005567 ORF Size: 936 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OR51B5 (NM_001005567) Human Tagged ORF Clone – RC219837L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001005567.1, NP_001005567.1 RefSeq Size: 939 bp RefSeq ORF: 939 bp Locus ID: 282763 UniProt ID: Q9H339, Q05CQ2 Protein Families: Transmembrane Protein Pathways: Olfactory transduction MW: 35.1 kDa Gene Summary: Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell.
    [Show full text]
  • Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with Hbf in Kuwaiti Patients with Sickle Cell Disease
    Journal of Personalized Medicine Article Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease Nagihan Akbulut-Jeradi 1,* , Maria Jinky Fernandez 1 , Rasha Al Khaldi 1 , Jalaja Sukumaran 2 and Adekunle Adekile 2 1 ATCLearn Center, Advanced Technology Company, P.O. Box 44558, Hawalli 32060, Kuwait; [email protected] (M.J.F.); [email protected] (R.A.) 2 Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] (J.S.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +965-22247251 Abstract: Patients with sickle cell disease (SCD) in Kuwait have elevated HbF levels ranging from ~10–44%; however, the modulating factors are unclear. We investigated the association of single nucleotide polymorphisms (SNPs) at BCL11A, HBS1L-MYB and HBB with HbF levels in 237 Kuwaiti SCD patients, divided into 3 subgroups according to their HbF levels. Illumina Ampliseq custom DNA panel was used for genotyping and confirmed by arrayed primer extension or Sanger sequenc- ing. In the BCL11A locus, the CC genotype of rs7606173 [χ2 = 16.5] and (GG) of rs10195871 [χ2 = 15.0] were associated with Hb-F1 and HbF-2 subgroups, unlike rs1427404-T [χ2 = 17.3], which showed the Citation: Akbulut-Jeradi, N.; highest association across the three subgroups. HBS1L-MYB locus revealed 2 previously-described Fernandez, M.J.; Al Khaldi, R.; SNPs (rs66650371 [c2 = 9.5] and rs35795442 [χ2 = 9.2]) and 2 previously-unreported SNPs, (rs13220662 Sukumaran, J.; Adekile, A.
    [Show full text]
  • A Genome-Wide Association Study of Age-Related Hearing Impairment in Middle- and Old-Aged Chinese Twins
    Hindawi BioMed Research International Volume 2021, Article ID 3629624, 14 pages https://doi.org/10.1155/2021/3629624 Research Article A Genome-Wide Association Study of Age-Related Hearing Impairment in Middle- and Old-Aged Chinese Twins Haiping Duan ,1,2,3 Wanxue Song ,1 Weijing Wang ,1 Hainan Cao ,4 Bingling Wang ,2,3 Yan Liu ,2,3 Chunsheng Xu ,2,3 Yili Wu ,1 Zengchang Pang ,2 and Dongfeng Zhang 1 1Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021 Shandong Province, China 2Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033 Shandong Province, China 3Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033 Shandong Province, China 4Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, 266011 Shandong Province, China Correspondence should be addressed to Dongfeng Zhang; [email protected] Received 23 July 2020; Revised 17 June 2021; Accepted 3 July 2021; Published 19 July 2021 Academic Editor: Cheol Lee Copyright © 2021 Haiping Duan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Age-related hearing impairment (ARHI) is considered an unpreventable disorder. We aimed to detect specific genetic variants that are potentially related to ARHI via genome-wide association study (GWAS). Methods. A sample of 131 dizygotic twins was genotyped for single-nucleotide polymorphism- (SNP-) based GWAS. Gene-based test was performed using VEGAS2.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • From Musk to Body Odor: Decoding Olfaction Through Genetic Variation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.27.441177; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. From musk to body odor: decoding olfaction through genetic variation Bingjie Li1,2,*, Marissa L. Kamarck3,4,*, Qianqian Peng1,*, Fei-Ling Lim5, Andreas Keller6, Monique A.M. Smeets7, Joel D. Mainland3,4,a, and Sijia Wang1,8,a 1CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; 2Department of Skin and Cosmetics Research, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China; 3Monell Chemical Senses Center, Philadelphia, PA 19104, USA; 4Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; 5Unilever Research & Development, Colworth, UK; 6Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065 USA; 7Unilever Research & Development, Rotterdam, The Netherlands; 8Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China This manuscript was compiled on April 23, 2021 The olfactory system combines input from multiple receptor types assay(5–12). to represent odor information, but there are few explicit examples Here, we utilize the same strategy of correlating perceptual relating olfactory receptor (OR) activity patterns to odor perception. and genetic variation, but with three improvements: 1. Using To uncover these relationships, we performed genome-wide scans a larger population to increase power, 2.
    [Show full text]