The Lomax-Exponential Distribution, Some Properties and Applications

Total Page:16

File Type:pdf, Size:1020Kb

The Lomax-Exponential Distribution, Some Properties and Applications © Statistical Research and Training Center دوره ی ١٣،ﺷﻤﺎره ی ٢، ﭘﺎﯾﯿﺰ و زﻣﺴﺘﺎن ١٣٩۵، ﺻﺺ ١٣١–١۵٣ J. Statist. Res. Iran 13 (2016): 131–153 DOI: 10.18869/acadpub.jsri.13.2.131 The Lomax-Exponential Distribution, Some Properties and Applications Nasrin Hami Golzary, Masoud Ganjiy;∗ and Hossein Bevraniz y University of Mohaghegh Ardabili z University of Tabriz Received: 1/21/2016 Approved: 1/28/2017 Abstract. The exponential distribution is a popular model in applica- tions to real data. We propose a new extension of this distribution, called the Lomax-exponential distribution, which presents greater flexibility to the model. Also there is a simple relation between the Lomax-exponential dis- tribution and the Lomax distribution. Results for moment, limit behavior, hazard function, Shannon entropy and order statistic are provided. To esti- mate the model parameters, the method of maximum likelihood and Bayse estimations are proposed. Two data sets are used to illustrate the applica- bility of the Lomax-exponential distribution. Keywords. T-X family; Lomax distribution; Shannon entropy; simulation study. MSC 2010: 62E15; 60E05. 1 Introduction The exponential and Lomax distributions are two important distributions in statistical practice. They possess several important statistical properties * Corresponding author 132 The Lomax-Exponential Distribution ::: and exhibit great mathematical tractability. History of exponential density function has been obtained in Balakrishnan and Basu (1995). Gupta and Kundu (1999a) introduced generalized exponential density function. Then Gupta and Kundu (1999b) derived some properties of generalized exponen- tial density function. The Lomax distribution, conditionally also called the Pareto Type II distribution, is used in business, economics, actuarial science and etc. It is essentially a Pareto distribution that has been shifted so that its support begins at zero. An extended Lomax distribution was introduced by Lemonte and Cordeiro (2011). Alzaatreh et al. (2013a) proposed the T-X families of distributions. These families of distributions were used to generate a new class of dis- tributions which offer more flexibility in modeling a variety of data sets. Various distributions can be driven by using this method. The gamma- half normal and the gamma-normal distributions were introduced by Alza- atreh and Knight (2013) and Alzaatreh et al. (2014) respectively. Also the gamma-Pareto and Weibull-Pareto distributions were studied by Alzaatreh et al. (2012) and Alzaatreh et al. (2013b) respectively. The gamma-uniform and logistic-uniform distributions were introduced by Torabi and Montaz- eri (2012, 2014). In this paper new distribution, Lomax-exponential will be introduced by using of the method of T-X family. Let F (x) be the cumulative distribution function (c.d.f.) of any random variable X. Also let r(t) and R(t) be the probability density function (p.d.f.) and c.d.f. of a random variable T defined on (0; 1) respectively. The c.d.f. of the T-X family of distributions defined by Alzaatreh et al. (2013a) is given by Z F (x) ( ) 1−F (x) F (x) G(x) = r(t)dt = R : (1) 0 1 − F (x) When X is a continuous random variable, the probability density function of the T-X family is ( ) f(x) F (x) g(x) = r : (2) (1 − F (x))2 1 − F (x) Let a random variable T follows the Lomax distribution with p.d.f. and c.d.f. respectively for t > 0; k; a > 0 as © 2016, SRTC Iran N. Hami Golzar, M. Ganji and H. Bevrani 133 kak r(t) = (3) (t + a)k+1 and a R(t) = 1 − ( )k: (4) t + a Then g(x) in (2) leads to the Lomax-X family with p.d.f. kakf(x)(1 − F (x))k−1 g(x) = : (5) [F (x) + af1 − F (x)g]k+1 The Lomax-exponential distribution (LED for short) is obtained if X follows the exponential distribution with parameter s. The corresponding c.d.f. and p.d.f. of X are respectively defined for k; a; s > 0 and x > 0 as ( ) a k G(x) = 1 − (6) esx + a − 1 and skakesx g(x) = : (7) (esx + a − 1)k+1 When k = a = 1, the LED reduces to the exponential distribution. Then the LED is a generalized of the exponential disreibution. 2 Properties of the Lomax-Exponential Distribu- tion In this section some general properties of the LED will be addressed in- cluding the limiting behavior, Shannon entropy, quantile function and etc. Lemmas 1 and 2 give the relations between the LED, Lomax and Pareto type 1 distributions. Lemma 1. If a random variable X follows the LED with parameters (k; a; s), then the random variable Y = esX − 1 follows the Lomax distribution with J. Statist. Res. Iran 13 (2016): 131–153 134 The Lomax-Exponential Distribution ::: parameters (k; a). Also Y = esX +a−1 follows the Pareto type 1 distribution with parameters (k,a). Proof. The result follows by using the transformation technique. Lemma 2. If a random variable X follows the Lomax distribution with 1 parameters (k; a), then the random variable V = s log(X + 1) follows the LED with parameters (k; a; s). Proof. The result follows by using the transformation technique. In Figure 1, various graphs of g(x) are provided. The p.d.f. of LED may take on a variety of shapes for different values of k, a and s. It can be right-skewed, approximately symmetric or reversed-J shape. The limit of ! ! 1 skak the p.d.f. of LED as x 0 and x are ak+1 and 0, respectively. The Figure 1 confirms these limits. (k = 4, a = 1, s = 2) (k = 4, a = 0.5, s = 2) (k = 9, a = 5, s = 0.25) (k = 4, a = 8, s = 1) (k = 2, a = 2, s = 2) (k = 0.2, a = 10, s = 7) (k = 0.25, a = 7, s = 5) (k = 0.5, a = 7, s = 2) g(x) 0.0 0.5 1.0 1.5 0 1 2 3 4 x Figure 1. The p.d.f. of LED for various value of k, a and s The hazard function associated with the LED is g(x) skesx h(x) = = : (8) 1 − G(x) esx + a − 1 © 2016, SRTC Iran N. Hami Golzar, M. Ganji and H. Bevrani 135 In Figure 2, various graphs of h(x) are provided for various values of k, a and s. It is clear that when a > 1, the hazard function is increasing, when a < 1, the hazard function is decreasing and when a = 1, the hazard function is fixed (= sk). The limits of the hazard function of the LED as x ! 0 and ! 1 sk x + are a and sk, respectively. (k = 1.5, a = 1, s = 2) (k = 1.5, a = 0.5, s = 2) (k = 1, a = 5, s = 2) (k = 4, a = 8, s = 1) (k = 1.5, a = 2, s = 2) (k = 0.5, a = 0.25, s = 1) h(x) 0 2 4 6 8 0 1 2 3 4 x Figure 2. The hazard function of LED for various value of k, a and s Theorem 1. The LED has a unique mode at x = x0. When a > k + 1, the 1 a−1 mode is x0 = s log k and when a < k + 1 the mode is x0 = 0. Proof. The mode of the LED can be obtained by taking the derivative of g(x) with respect to x, (g0) and by setting it to zero. It is easy to see g0 > 0 1 a−1 0 1 a−1 for 0 < x < s log k and g < 0 for x > s log k . 2.1 Quantile Function The quantile function of the LED, Q(λ), 0 < λ < 1 is obtained by solving G(Q(λ)) = λ. It implies that J. Statist. Res. Iran 13 (2016): 131–153 136 The Lomax-Exponential Distribution ::: ( ) 1 a Q(λ) = log p − a + 1 : s k 1 − λ The median of the LED is obtained as 0 1 1 1 a Median = Q( ) = log @ q − a + 1A : (9) 2 s k 1 2 2.2 Moment The moment generating function for the LED is given by Z Z 1 1 (t+s)x tX tx k e MX (t) = E(e ) = e g(x)dx = ska sx k+1 dx: 0 0 (e + a − 1) By defining y = esx + a − 1 Z 1 t − s k (y a + 1) MX (t) = ka k+1 dy: a y Using Taylor expansion t − t t − s 2 − 2 t t t t −1 s ( s 1)y (1 a) (y − a + 1) s = y s + y s (1 − a) + + ··· s 2 t t t −1 ' y s + y s (1 − a): s Then Z 1 t (y − a + 1) s M (t) = kak dy X yk+1 Za 1 t t t −1 y s + y s (1 − a) ' k s ka k+1 dy ( a y ) t t −1 a s (1 − a)ta s = k + ; (10) − t − t k s s(k + 1 s ) © 2016, SRTC Iran N. Hami Golzar, M. Ganji and H. Bevrani 137 provided t < ks. The derivative of (10) with respect to t is given by ! t t t @ k a s (k − ) log a + a s M (t) = s @t X s (k − t )2 " s # t −1 t −1 t t −1 k (1 − a)f(sa s + ta s log a)(k + 1 − ) + ta s g + s : − t 2 s (k + 1 s ) The first non-central moment follows by setting t=0, k log a + 1 k(1 − a) E (X) = + : (11) LED sk as(k + 1) By defining k = a = 1 in (11), the first non-central moment of the exponential distribution is obtained as 1 E (X) = : LED s Simultaneously, the equation (11) works well in Subsection 2.7.
Recommended publications
  • Half Logistic Inverse Lomax Distribution with Applications
    S S symmetry Article Half Logistic Inverse Lomax Distribution with Applications Sanaa Al-Marzouki 1, Farrukh Jamal 2, Christophe Chesneau 3,* and Mohammed Elgarhy 4 1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia; [email protected] 2 Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan; [email protected] 3 Department of Mathematics, LMNO, Université de Caen-Normandie, Campus II, Science 3, 14032 Caen, France 4 The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +33-02-3156-7424 Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un- derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities have certain limits that researchers aim to overcome. These limits include a certain stiffness in the modulation of the peak and tail properties of the related probability density function. In this paper, a solution is given by using the functionalities of the half logistic family. We introduce a new three- parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution. We highlight its superiority over the inverse Lomax distribution through various theoretical and practical approaches. The derived properties include the stochastic orders, quantiles, moments, incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the corresponding parametric model. The parameters estimation is performed by six well-established methods. Numerical results are presented to compare the performance of the obtained estimates. Also, a simulation study on the estimation of the Rényi entropy is proposed.
    [Show full text]
  • Study of Generalized Lomax Distribution and Change Point Problem
    STUDY OF GENERALIZED LOMAX DISTRIBUTION AND CHANGE POINT PROBLEM Amani Alghamdi A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: Arjun K. Gupta, Committee Co-Chair Wei Ning, Committee Co-Chair Jane Chang, Graduate Faculty Representative John Chen Copyright c 2018 Amani Alghamdi All rights reserved iii ABSTRACT Arjun K. Gupta and Wei Ning, Committee Co-Chair Generalizations of univariate distributions are often of interest to serve for real life phenomena. These generalized distributions are very useful in many fields such as medicine, physics, engineer- ing and biology. Lomax distribution (Pareto-II) is one of the well known univariate distributions that is considered as an alternative to the exponential, gamma, and Weibull distributions for heavy tailed data. However, this distribution does not grant great flexibility in modeling data. In this dissertation, we introduce a generalization of the Lomax distribution called Rayleigh Lo- max (RL) distribution using the form obtained by El-Bassiouny et al. (2015). This distribution provides great fit in modeling wide range of real data sets. It is a very flexible distribution that is related to some of the useful univariate distributions such as exponential, Weibull and Rayleigh dis- tributions. Moreover, this new distribution can also be transformed to a lifetime distribution which is applicable in many situations. For example, we obtain the inverse estimation and confidence intervals in the case of progressively Type-II right censored situation. We also apply Schwartz information approach (SIC) and modified information approach (MIC) to detect the changes in parameters of the RL distribution.
    [Show full text]
  • The Poisson-Lomax Distribution
    Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 225 a 245 The Poisson-Lomax Distribution Distribución Poisson-Lomax Bander Al-Zahrania, Hanaa Sagorb Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia Abstract In this paper we propose a new three-parameter lifetime distribution with upside-down bathtub shaped failure rate. The distribution is a com- pound distribution of the zero-truncated Poisson and the Lomax distribu- tions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in de- tail. The maximum likelihood estimators of the unknown parameters are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution. Key words: Asymptotic variance-covariance matrix, Compounding, Life- time distributions, Lomax distribution, Poisson distribution, Maximum like- lihood estimation. Resumen En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezcla de la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica.
    [Show full text]
  • Weibull-Lomax Distribution and Its Properties and Applications
    Al-Azhar University-Gaza Deanship of Postgraduate Studies Faculty of Economics and Administrative Sciences Department of Statistics Weibull-Lomax Distribution and its Properties and Applications توزيع ويبل - لومكس و خصائصه و تطبيقاته By: Ahmed Majed Hamad El-deeb Supervisor: Prof. Dr. Mahmoud Khalid Okasha A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Statistics Gaza, 2015 Abstract The Weibull distribution is a very popular probability mathematical distribution for its flexibility in modeling lifetime data particularly for phenomenon with monotone failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of its negatively and positively skewed density shapes. However, it does not provide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the bathtub and upside-down bathtub shapes and the unimodal failure rates which are common in reliability, biological studies and survival studies. In this thesis we introduce and discuss a new generalization of Weibull distribution called the Four-parameter Weibull-Lomax distribution in an attempt to overcome the problem of not being able to fit the phenomenon with non-monotone failure rates. The new distribution is quite flexible for analyzing various shapes of lifetime data and has an increasing, decreasing, constant, bathtub or upside down bathtub shaped hazard rate function. Some basic mathematical functions associated with the proposed distribution are obtained. The Weibull-Lomax density function could be wrought as a double mixture of Exponentiated Lomax densities. And includes as special cases the exponential, Weibull. Shapes of the density and the hazard rate function are discussed.
    [Show full text]
  • Newdistns: an R Package for New Families of Distributions
    JSS Journal of Statistical Software March 2016, Volume 69, Issue 10. doi: 10.18637/jss.v069.i10 Newdistns: An R Package for New Families of Distributions Saralees Nadarajah Ricardo Rocha University of Manchester Universidade Federal de São Carlos Abstract The contributed R package Newdistns written by the authors is introduced. This pack- age computes the probability density function, cumulative distribution function, quantile function, random numbers and some measures of inference for nineteen families of distri- butions. Each family is flexible enough to encompass a large number of structures. The use of the package is illustrated using a real data set. Also robustness of random number generation is checked by simulation. Keywords: cumulative distribution function, probability density function, quantile function, random numbers. 1. Introduction Let G be any valid cumulative distribution function defined on the real line. The last decade or so has seen many approaches proposed for generating new distributions based on G. All of these approaches can be put in the form F (x) = B (G(x)) , (1) where B : [0, 1] → [0, 1] and F is a valid cumulative distribution function. So, for every G one can use (1) to generate a new distribution. The first approach of the kind of (1) proposed in recent years was that due to Marshall and Olkin(1997). In Marshall and Olkin(1997), B was taken to be B(p) = βp/ {1 − (1 − β)p} for β > 0. The distributions generated in this way using (1) will be referred to as Marshall Olkin G distributions. Since Marshall and Olkin(1997), many other approaches have been proposed.
    [Show full text]
  • Power Normal Distribution
    Power Normal Distribution Debasis Kundu1 and Rameshwar D. Gupta2 Abstract Recently Gupta and Gupta [10] proposed the power normal distribution for which normal distribution is a special case. The power normal distribution is a skewed distri- bution, whose support is the whole real line. Our main aim of this paper is to consider bivariate power normal distribution, whose marginals are power normal distributions. We obtain the proposed bivariate power normal distribution from Clayton copula, and by making a suitable transformation in both the marginals. Lindley-Singpurwalla dis- tribution also can be used to obtain the same distribution. Different properties of this new distribution have been investigated in details. Two different estimators are proposed. One data analysis has been performed for illustrative purposes. Finally we propose some generalizations to multivariate case also along the same line and discuss some of its properties. Key Words and Phrases: Clayton copula; maximum likelihood estimator; failure rate; approximate maximum likelihood estimator. 1 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Pin 208016, India. Corresponding author. e-mail: [email protected]. Part of his work has been supported by a grant from the Department of Science and Technology, Government of India. 2 Department of Computer Science and Applied Statistics. The University of New Brunswick, Saint John, Canada, E2L 4L5. Part of the work was supported by a grant from the Natural Sciences and Engineering Research Council. 1 1 Introduction The skew-normal distribution proposed by Azzalini [3] has received a considerable attention in the recent years. Due to its flexibility, it has been used quite extensively for analyzing skewed data on the entire real line.
    [Show full text]
  • Useful Generalization of the Inverse Lomax Distribution: Statistical Properties and Application to Lifetime Data
    American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copy Right@ Obubu Maxwell Useful Generalization of the Inverse Lomax Distribution: Statistical Properties and Application to Lifetime Data Obubu Maxwell1, Adeleke Akinrinade Kayode2, Ibeakuzie Precious Onyedikachi1, Chinelo Ijeoma Obi-Okpala1, Echebiri Udochukwu Victor3 1Department of Statistics, Nnamdi Azikiwe University, Nigeria 2Department of Statistics, University of Ilorin, Nigeria 3Department of Statistics, University of Benin, Nigeria *Corresponding author: Obubu Maxwell, Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria To Cite This Article: Obubu Maxwell, Useful Generalization of the Inverse Lomax Distribution: Statistical Properties and Application to Lifetime Data. Am J Biomed Sci & Res. 2019 - 6(3). AJBSR.MS.ID.001040. DOI: 10.34297/AJBSR.2019.06.001040. Received: November 15, 2019; Published: November 26, 2019 Abstract A four-parameter compound continuous distribution for modeling lifetime data known as the Odd Generalized Exponentiated Inverse Lomax distribution was proposed in this study. Basic Structural properties were derived in minute details. Simulation studies was carried out to investigate the behavior of the proposed distribution, from which the maximum likelihood estimates for the true parameters, including the bias and root mean existing distribution. square error (RMSE)
    [Show full text]
  • Field Guide to Continuous Probability Distributions
    Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations.
    [Show full text]
  • Estimation of Lomax Parameters Based on Generalized Probability Weighted Moment
    JKAU: Sci., Vol. 22 No. 2, pp: 171-184 (2010 A.D./1431 A.H.) Doi: 10.4197 / Sci. 22-2.13 Estimation of Lomax Parameters Based on Generalized Probability Weighted Moment Abdullah M. Abd-Elfattah, and Abdullah H. Alharbey Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Probability weighted moments method, introduced and recommend earlier as an alternate method to the classical moments, for fitting statistical distributions to data; is thought to be less affected by sampling variability and be more efficient at producing robust parameter estimates in case of small samples. In this paper, the generalized probability weighted moments method is applied for estimating the parameters of Lomax distribution. 1. Introduction Greenwood et al.[1] introduced a new method for estimating the parameters of distribution, which is called the method of probability weighted moments (PWM) which can be applied to the probability distribution functions which have inverse form, such as Weibull, generalized Pareto, Log logistic. Landweher et al.[2,3] compared the performance of the estimations, that have been obtained by probability weighted moments, and the maximum likelihood method, and the method of moments for the parameters of Gumbel distribution and found that the method of probability weighted moments gives better results compared to the others. Hosking et al.[4] noted that the new definition of probability weighted moments described by Greenwood et al.[1] can be used as the traditional Moments. Moreover, Song and Ding[5] stated the probability weighted distributions of the distributions can be applied to the distributions that can not be expressed in 171 Abd-Elfattah, A.
    [Show full text]
  • Entropy of Lomax Probability Distribution and Its Order Statistic
    International Journal of Statistics and Systems ISSN 0973-2675 Volume 12, Number 2 (2017), pp. 175–181 © Research India Publications http://www.ripublication.com Entropy of Lomax Probability Distribution and its Order Statistic Bhagwati Devi, Parmil Kumar, and Kirandeep Kour Dept. of Statistics, University of Jammu, 180006, India. Abstract The term entropy was introduced by Shannon in 1948. The study of underlying dis- tribution and associated properties is necessary to explore and understand the nature of many statistical phenomenon. As every probability distribution has certain kind of uncertainty associated with it, which is measured by the entropy. In the present communication, we have derived the entropy of Lomax probability distribution as well as their order statistics which is used in business, economics, actuarial model- ing, queuing problems and biological sciences. AMS subject classification: Keywords: Entropy, Probability distribution, Order statistics, Lomax distribution. 1. Introduction Every probability distribution has some kind of uncertainty associated with it and En- tropy is used to measure this uncertainty. Entropy is also considered as a measure of randomness of a probabilistic system. The concept of âŁœEntropy⣞ was introduced by Shannon (1948) as a measure of information , which provides a quantitative measure of the uncertainty. It is a measure of average uncertainty in a random variable. When a system is in a number of states randomly with equal probability of occurrences entropy attains its maximum value and attains minimum value i.e 0 when the system is in one particular state, which means there is no uncertainty in its description. Differential entropy extends the idea of Shannon’s entropy.
    [Show full text]
  • Package 'Extradistr'
    Package ‘extraDistr’ September 7, 2020 Type Package Title Additional Univariate and Multivariate Distributions Version 1.9.1 Date 2020-08-20 Author Tymoteusz Wolodzko Maintainer Tymoteusz Wolodzko <[email protected]> Description Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson. License GPL-2 URL https://github.com/twolodzko/extraDistr BugReports https://github.com/twolodzko/extraDistr/issues Encoding UTF-8 LazyData TRUE Depends R (>= 3.1.0) LinkingTo Rcpp 1 2 R topics documented: Imports Rcpp Suggests testthat, LaplacesDemon, VGAM, evd, hoa,
    [Show full text]
  • A Theoretical Analysis of the Odd Generalized Exponentiated Inverse Lomax Distribution
    Biometrics & Biostatistics International Journal Research Article Open Access A theoretical analysis of the odd generalized exponentiated inverse Lomax distribution Abstract Volume 8 Issue 1 - 2019 A four parameter compound continuous distribution for modeling lifetime data known Obubu Maxwell,1 Agu Friday,I,2 Nwokike as the Odd Generalized Exponentiated Inverse Lomax distribution was proposed in 3 4 this study. Basic Structural properties were derived in minute details. Chukwudike C, Francis Runyi E, Offorha Bright C3 Keywords: odd generalized Exponentiated family, inverse lomax distribution, 1Department of Statistics, Nnamdi Azikiwe University, Nigeria moments, reliability function, hazard function, continuous distribution 2Department of Statistics, University of Calabar, Nigeria 3Department of Statistics, Abia State University, Nigeria 4Department of Mathematics and Computer Science, Arthur Jarvis University, Nigeria Correspondence: Obubu Maxwell, Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria, Email Received: January 17, 2019 | Published: February 11, 2019 Introduction and tractable than the Inverse Lomax distribution. The rest of the article is structured as follows: In section 2, we derive the cumulative Various distributions have been proposed to serve as models for distribution function, probability density function, reliability function, wide applications on data from different real-life situations through odd function, hazard function, reverse hazard function, and cumulative the extension of existing distribution.
    [Show full text]