The Road to Perspective Are Often Badly Covered, If at All

Total Page:16

File Type:pdf, Size:1020Kb

The Road to Perspective Are Often Badly Covered, If at All Coding with Lisp Coding with Lisp Developing Lisp code on a free software platform is no mean feat, and documentation, though available, is dispersed and comparison to solid, hefty common tools such as gcc, often too concise for users new to Lisp. In the second part of gdb and associated autobuild suite. There’s a lot to get used to here, and the implementation should be an accessible guide to this fl exible language, self-confessed well bonded with an IDE such as GNU Emacs. SLIME is a contemporary solution which really does this job, Lisp newbie Martin Howse assesses practical issues and and we’ll check out some integration issues, and outline further sources of Emacs enlightenment. It’s all implementations under GNU/Linux about identifying best of breed components, outlining solutions to common problems and setting the new user on the right course, so as to promote further growth. And as users do develop, further questions inevitably crop up, questions which online documentation is poorly equipped to handle. Packages and packaging from both a user and developer The Road To perspective are often badly covered, if at all. And whereas, in the world of C, everyday libraries are easy to identify, under Common Lisp this is far from the case. Efforts such as key SBCL (Steel Bank Common Lisp) developer and all round good Lisp guy, Dan Barlow’s cirCLe project, which aimed to neatly package implementation, IDE, documentation, libraries and packagingpackaging ttools,ools, wouldwould ccertainlyertainly mmakeake llifeife eeasierasier forfor tthehe nnewbie,ewbie, bbutut Graphical Common OpenMCL all play well here, with work in Lisp IDEs are a rare unfortunatelyunfortunately progressprogress doesdoes sseemeem ttoo hhaveave slowedslowed onon thisthis ffront.ront. thing these days, progress on CLISP.CLISP. Other key issues in assessing and Jabberwocky Lisps include the availability of functional does pack in the MANY WORLDS features if you prefer libraries, deliverydelivery of executables and the nature WithoutWithout even throwing Scheme, a distinct dialect of Lisp, into the a GUI management of compilation. The last is a tricky topic which and coding approach mix, and scarcelyscarcely scratching the surfacesurface of smallersmaller,, more embeddable involves some digging deep into how such Lisps Lisp custom Lisps, the terrain of free implementations is vast and few work. However,However, although such technical issues Garnet is certainly easier to swallow than maps exist to readily guide the newbie. Free Common Lisps include do have some bearing, choosing an appropriate “Generating an the exotically titled Armed Bear Lisp, CLISP,CLISP, a pleasant interactive Lisp, Lisp is a lot more about style and fl avour,avour, with Amalgam of Real-time, Novel Editors and isp is as esoteric as it is powerful, and coding is truly GCL, the offi cial GNU Common Lisp and the two big hitters CMUCL factors such as verbosity and ease of re-entering Toolkits,” and in the only route to mastering the intricacies of this (CMU Common Lisp) and SBCL (Steel Bank Common Lisp). Other the REPL or top-level as major elements here. practise it does offer a versatile, well thought Lcomplex and supremely intriguing language and the free Lisps of note include the cool and veryvery powerfulpowerful OpenMCL, Under GNU/Linux on an x86 architecture,architecture, out GUI toolkit rapid development model presented by its REPL (Read Eval which runs on a PPC architecturearchitecture under LinuxPPC or Darwin,Darwin, and in CMUCL and SBCL really are the major players, Print Loop) or top-level. Lisp masters well earn the title of the latter instance includes bindings to Cocoa and Carbon, which garnering most respect from the community.community. It’sIt’s wizards, and it’s no coincidence that Abelson and Sussman makes for elegant application building. VariousVarious comparative sursurveysveys also worth mentioning that SBCL now offers 64 refer to casting spells with Lisp, a common metaphor have been made of these major free Lisps, with the ubiquitous bit support for the AMD64 and EM64T within the community and modifi ed title of a popular cliki.net resourceresource providing at-a-glance tables surveyingsurveying the terrain as platforms. CLISP is well worth keeping in reserve,reserve, beginner’s tutorial at lisperati.com. to features, ANSI compliance and performanceperformance across a good range however,however, with good performanceperformance for some tasks, In the fi rst article in this series, the conceptual of benchmarks. Of course compliance is important, particularly if and readline providing an excellent level of underpinnings of Lisp were presented, giving a fl avour of you’re interested in coding portable applications across command line interaction. It’sIt’s a good, the language from a cultural and theoretical perspective. As implementations, but there are plenty for other issues which effect lightweight Lisp to fi re up at odd moments, an aside, before getting down to the real action of Lisp on the choice, particularly for new users. Once Lisp experience has been when you simply don’tdon’t need the burden of a a free software platform, it’s also worth stressing the gained, other fl avours can be checked out as it’sit’s obvious that some fully fl edged IDE. CLISP can even be used as a importance of Lisp to thinkers and mathematicians on the Lisps are better suited to particular projects. shell for those who like to see Lisp everywhere.everywhere. bleeding edge of theory, working artistically in what are Given that CMUCL and SBCL can readily be often considered wholly scientifi c fi elds. Douglas Hofstadter, viewed as brothers, forking from the same stock of GEB (Godel, Escher, Bach: An Eternal Golden Braid) fame provides an excellent It’s no coincidence that or code base, the choice between these high introduction to the playfully recursive aspects of Lisp in his rich and rewarding performance Lisps is something of a tough one, Metamagical Themas. And both Bruno Marchal and Gregory Chaitin, working in the boiling down to look and feel, and compatibility fi elds of consciousness theory and hardcore maths and computation respectively, have Abelson and Sussman with various libraries or research apps such as expressed huge interest in the elegance of Lisp. Aside from such lofty concerns which Common Music. Indeed, SBCL derives so much serve to fi re the thirst for Lisp, what we’re concerned with here is getting down and refer to casting spells with Lisp code from CMUCL, created at Carnegie Mellon dirty with some simple application or example code, say from Paul Graham’s excellent University, that save for the confusion such a ANSI Common Lisp, and such an enterprise demands a robust and readily navigable naming would cause, CMUCL has been mooted working environment. We’ll need to select from a plethora of free software Lisp (and Alongside portability, other pressing issues include the level of as an equally appropriate name for this vibrant dialects such as Scheme) implementations, choosing one which will readily suit a integration with a suitably powerful IDE. In this instance SLIME offshoot. In practise, SBCL’s rather ugly beginner, whilst still remaining open to others more suited to certain more demanding (Superior Lisp Interaction Mode for Emacs) has been chosen as best of expansion into Steel Bank Common Lisp is an users and applications. Some free software Lisps can seem brittle and over-verbose in breed component which fi ts the bill here, and CMUCL, SBCL, and acknowledgement of the industries where 28 LinuxUser & Developer LinuxUser & Developer 29 Coding with Lisp Coding with Lisp Andrew Carnegie and Andrew Mellon, with functions such as compile-fi le. SBCL takes a similar approach, EINE, ZWEI respectively, made the money. The name also but cuts out the middleman. In both instances, the speed of a Lisp can well be developed following the edit-compile-test cycle of well refers to the heavyweight, industry-strength compiled language is proffered with all the development benefi ts of languages such as C, with, for example, an editor providing qualities of this powerful Lisp, and though interactive interpretation. It’s a win win situation. In common with indentation, highlighting and shell access, and any of the Lisps under favoured by hardcore free software hackers on CMUCL, SBCL offers a low level, basic interpreter for easy forms. consideration compiling to native code for debugging. However, as the Lisp scene, such as key developer Dan More complex stuff is thrown straight at the native compiler. Of we’ve seen in the last issue, the beauty of Lisp lies in supreme Barlow, SBCL lives up to the tough, heavy course it’s all still totally interactive, and compiled-function-p is our interaction, with on-the-fl y bugfi xes a distinct possibility. The REPL handed, somewhat ugly inspiration of its name. only clue that we’re not dealing strictly with an interpreter. provides for this interaction in theory, but in practise an IDE which That said, SBCL does expose a decent feature set SBCL does present a more attractive package given its more active integrates with this functionality and extends it radically is very much with native threads as a major bonus, but most development model, which means that libraries and build systems are in order for this complex language. Such an IDE should free the coder differences between the two siblings lie under well packaged for it. The ASDF package management system, though from banal concerns with syntax and numerous shortcuts should ease the bonnet and relate to the differing now ported to CMUCL, was originally an SBCL only affair, and repetitive actions and provide for fl exible, customised development development models of both Lisps. packaging of asdf-install does refl ect this.
Recommended publications
  • GNU/Linux AI & Alife HOWTO
    GNU/Linux AI & Alife HOWTO GNU/Linux AI & Alife HOWTO Table of Contents GNU/Linux AI & Alife HOWTO......................................................................................................................1 by John Eikenberry..................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. Symbolic Systems (GOFAI)................................................................................................................1 3. Connectionism.....................................................................................................................................1 4. Evolutionary Computing......................................................................................................................1 5. Alife & Complex Systems...................................................................................................................1 6. Agents & Robotics...............................................................................................................................1 7. Statistical & Machine Learning...........................................................................................................2 8. Missing & Dead...................................................................................................................................2 1. Introduction.........................................................................................................................................2
    [Show full text]
  • The Clon User Manual the Command-Line Options Nuker, Version 1.0 Beta 25 "Michael Brecker"
    The Clon User Manual The Command-Line Options Nuker, Version 1.0 beta 25 "Michael Brecker" Didier Verna <[email protected]> Copyright c 2010{2012, 2015, 2017, 2020, 2021 Didier Verna Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled \Copy- ing" is included exactly as in the original. Permission is granted to copy and distribute translations of this manual into an- other language, under the above conditions for modified versions, except that this permission notice may be translated as well. Cover art by Alexis Angelidis. i Table of Contents Copying ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2 Installation:::::::::::::::::::::::::::::::::::::::::::::::::::::: 5 3 Quick Start ::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 3.1 Full Source :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 3.2 Explanation ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 4 Using Clon :::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1 Synopsis Definition ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1.1 Synopsis Items ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 4.1.1.1 Text ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • An Implementation of Python for Racket
    An Implementation of Python for Racket Pedro Palma Ramos António Menezes Leitão INESC-ID, Instituto Superior Técnico, INESC-ID, Instituto Superior Técnico, Universidade de Lisboa Universidade de Lisboa Rua Alves Redol 9 Rua Alves Redol 9 Lisboa, Portugal Lisboa, Portugal [email protected] [email protected] ABSTRACT Keywords Racket is a descendent of Scheme that is widely used as a Python; Racket; Language implementations; Compilers first language for teaching computer science. To this end, Racket provides DrRacket, a simple but pedagogic IDE. On the other hand, Python is becoming increasingly popular 1. INTRODUCTION in a variety of areas, most notably among novice program- The Racket programming language is a descendent of Scheme, mers. This paper presents an implementation of Python a language that is well-known for its use in introductory for Racket which allows programmers to use DrRacket with programming courses. Racket comes with DrRacket, a ped- Python code, as well as adding Python support for other Dr- agogic IDE [2], used in many schools around the world, as Racket based tools. Our implementation also allows Racket it provides a simple and straightforward interface aimed at programs to take advantage of Python libraries, thus signif- inexperienced programmers. Racket provides different lan- icantly enlarging the number of usable libraries in Racket. guage levels, each one supporting more advanced features, that are used in different phases of the courses, allowing Our proposed solution involves compiling Python code into students to benefit from a smoother learning curve. Fur- semantically equivalent Racket source code. For the run- thermore, Racket and DrRacket support the development of time implementation, we present two different strategies: additional programming languages [13].
    [Show full text]
  • The Machine That Builds Itself: How the Strengths of Lisp Family
    Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology.
    [Show full text]
  • Bringing GNU Emacs to Native Code
    Bringing GNU Emacs to Native Code Andrea Corallo Luca Nassi Nicola Manca [email protected] [email protected] [email protected] CNR-SPIN Genoa, Italy ABSTRACT such a long-standing project. Although this makes it didactic, some Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor limitations prevent the current implementation of Emacs Lisp to family. GNU Emacs can currently execute Elisp code either inter- be appealing for broader use. In this context, performance issues preted or byte-interpreted after it has been compiled to byte-code. represent the main bottleneck, which can be broken down in three In this work we discuss the implementation of an optimizing com- main sub-problems: piler approach for Elisp targeting native code. The native compiler • lack of true multi-threading support, employs the byte-compiler’s internal representation as input and • garbage collection speed, exploits libgccjit to achieve code generation using the GNU Com- • code execution speed. piler Collection (GCC) infrastructure. Generated executables are From now on we will focus on the last of these issues, which con- stored as binary files and can be loaded and unloaded dynamically. stitutes the topic of this work. Most of the functionality of the compiler is written in Elisp itself, The current implementation traditionally approaches the prob- including several optimization passes, paired with a C back-end lem of code execution speed in two ways: to interface with the GNU Emacs core and libgccjit. Though still a work in progress, our implementation is able to bootstrap a func- • Implementing a large number of performance-sensitive prim- tional Emacs and compile all lexically scoped Elisp files, including itive functions (also known as subr) in C.
    [Show full text]
  • Omnipresent and Low-Overhead Application Debugging
    Omnipresent and low-overhead application debugging Robert Strandh [email protected] LaBRI, University of Bordeaux Talence, France ABSTRACT application programmers as opposed to system programmers. The state of the art in application debugging in free Common The difference, in the context of this paper, is that the tech- Lisp implementations leaves much to be desired. In many niques that we suggest are not adapted to debugging the cases, only a backtrace inspector is provided, allowing the system itself, such as the compiler. Instead, throughout this application programmer to examine the control stack when paper, we assume that, as far as the application programmer an unhandled error is signaled. Most such implementations do is concerned, the semantics of the code generated by the not allow the programmer to set breakpoints (unconditional compiler corresponds to that of the source code. or conditional), nor to step the program after it has stopped. In this paper, we are mainly concerned with Common Furthermore, even debugging tools such as tracing or man- Lisp [1] implementations distributed as so-called FLOSS, i.e., ually calling break are typically very limited in that they do \Free, Libre, and Open Source Software". While some such not allow the programmer to trace or break in important sys- implementations are excellent in terms of the quality of the tem functions such as make-instance or shared-initialize, code that the compiler generates, most leave much to be simply because these tools impact all callers, including those desired when it comes to debugging tools available to the of the system itself, such as the compiler.
    [Show full text]
  • How Lisp Systems Look Different in Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2008)
    How Lisp Systems Look Different In Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2008) Adrian Dozsa Tudor Gˆırba Radu Marinescu Politehnica University of Timis¸oara University of Berne Politehnica University of Timis¸oara Romania Switzerland Romania [email protected] [email protected] [email protected] Abstract rently used in a variety of domains, like bio-informatics (BioBike), data mining (PEPITe), knowledge-based en- Many reverse engineering approaches have been devel- gineering (Cycorp or Genworks), video games (Naughty oped to analyze software systems written in different lan- Dog), flight scheduling (ITA Software), natural language guages like C/C++ or Java. These approaches typically processing (SRI International), CAD (ICAD or OneSpace), rely on a meta-model, that is either specific for the language financial applications (American Express), web program- at hand or language independent (e.g. UML). However, one ming (Yahoo! Store or reddit.com), telecom (AT&T, British language that was hardly addressed is Lisp. While at first Telecom Labs or France Telecom R&D), electronic design sight it can be accommodated by current language inde- automation (AMD or American Microsystems) or planning pendent meta-models, Lisp has some unique features (e.g. systems (NASA’s Mars Pathfinder spacecraft mission) [16]. macros, CLOS entities) that are crucial for reverse engi- neering Lisp systems. In this paper we propose a suite of Why Lisp is Different. In spite of its almost fifty-year new visualizations that reveal the special traits of the Lisp history, and of the fact that other programming languages language and thus help in understanding complex Lisp sys- borrowed concepts from it, Lisp still presents some unique tems.
    [Show full text]
  • Praise for Practical Common Lisp
    Praise for Practical Common Lisp “Finally, a Lisp book for the rest of us. If you want to learn how to write a factorial function, this is not your book. Seibel writes for the practical programmer, emphasizing the engineer/artist over the scientist and subtly and gracefully implying the power of the language while solving understandable real-world problems. “In most chapters, the reading of the chapter feels just like the experience of writing a program, starting with a little understanding and then having that understanding grow, like building the shoulders upon which you can then stand. When Seibel introduced macros as an aside while building a test frame- work, I was shocked at how such a simple example made me really ‘get’ them. Narrative context is extremely powerful, and the technical books that use it are a cut above. Congrats!” —Keith Irwin, Lisp programmer “While learning Lisp, one is often referred to the CL HyperSpec if they do not know what a particular function does; however, I found that I often did not ‘get it’ just by reading the HyperSpec. When I had a problem of this manner, I turned to Practical Common Lisp every single time—it is by far the most readable source on the subject that shows you how to program, not just tells you.” —Philip Haddad, Lisp programmer “With the IT world evolving at an ever-increasing pace, professionals need the most powerful tools available. This is why Common Lisp—the most powerful, flexible, and stable programming language ever—is seeing such a rise in popu- larity.
    [Show full text]
  • Common Lisp - Viel Mehr Als Nur D¨Amliche Klammern
    Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Common Lisp - viel mehr als nur d¨amliche Klammern Alexander Schreiber <[email protected]> http://www.thangorodrim.de Chemnitzer Linux-Tage 2005 Greenspun’s Tenth Rule of Programming: “Any sufficiently-complicated C or Fortran program contains an ad-hoc, informally-specified bug-ridden slow implementation of half of Common Lisp.” Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 1 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Ubersicht¨ 1 Einf¨uhrung 2 Geschichtliches 3 Die Programmiersprache 4 Abschluß Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 2 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking f¨ur“Final Fantasy”, Naughty Dog Software: Crash Bandicoot auf Sony Playstation, AMD & AMI: Chip-Design & Verifizierung, typischerweise komplexe Probleme: Wissensverarbeitung, Expertensysteme, Planungssysteme Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 3 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking
    [Show full text]
  • GNU MP the GNU Multiple Precision Arithmetic Library Edition 6.2.1 14 November 2020
    GNU MP The GNU Multiple Precision Arithmetic Library Edition 6.2.1 14 November 2020 by Torbj¨ornGranlund and the GMP development team This manual describes how to install and use the GNU multiple precision arithmetic library, version 6.2.1. Copyright 1991, 1993-2016, 2018-2020 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being \A GNU Manual", and with the Back-Cover Texts being \You have freedom to copy and modify this GNU Manual, like GNU software". A copy of the license is included in Appendix C [GNU Free Documentation License], page 132. i Table of Contents GNU MP Copying Conditions :::::::::::::::::::::::::::::::::::: 1 1 Introduction to GNU MP ::::::::::::::::::::::::::::::::::::: 2 1.1 How to use this Manual :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2 Installing GMP ::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.1 Build Options:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.2 ABI and ISA :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 2.3 Notes for Package Builds:::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 2.4 Notes for Particular Systems :::::::::::::::::::::::::::::::::::::::::::::::::::::: 12 2.5 Known Build Problems ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 14 2.6 Performance
    [Show full text]
  • Proceedings-Print.Pdf ISSN: 2175-6759 ISBN: 978-85-76694-75-5
    Edited by: Flávio Luiz Schiavoni Rodrigo Schramm José Eduardo Fornari Novo Junior Leandro Lesqueves Costalonga ISSN 2175-6759 Ficha catalográfica elaborada pelo Setor de Processamento Técnico da Divisão de Biblioteca da UFSJ Simpósio Brasileiro de Computação Musical (15. : 2015 : Campinas, SP) Anais [recurso eletrônico] do 15º Simpósio Brasileiro de Computação Musical = 15th Brazilian Symposium on Computer Music (SBCM), 23 a 25 de novembro de 2015, Campinas, SP / editado por Flávio Luiz Schiavoni ... [et al.]. – Campinas: UNICAMP, 2015. Disponível em: http://compmus.ime.usp.br/sbcm2015/files/proceedings-print.pdf ISSN: 2175-6759 ISBN: 978-85-76694-75-5 1. Música por computador. 2. Arte e tecnologia. 3. Multimídia (Arte). I. Schiavoni, Flávio Luiz (Ed.). II. Título. CDU: 78:004 SBCM 2015 is organized by University of Campinas (UNICAMP) President: Jos´eTadeu Jorge Vice President for University Coordination: Alvaro´ Penteado Cr´osta Vice President for Research (PRP): Gl´aucia Maria Pastore Coordination of Interdisciplinary Centers (COCEN) Coordinator: Jurandir Zullo Junior Interdisciplinary Center for Studies on Sound Communication (NICS) Coordinator: Adriana do Nascimento Ara´ujo Mendes Art Institute, Department of Music Director: Fernando Augusto de Almeida Hashimoto Chief of the Department: Leandro Barsalini Coordinator of Graduate Studies in Music: Alexandre Zamith Almeida Coordinator of Undergraduate Studies in Music: Paulo J. Siqueira Tin´e Production Center Staff (Ceprod) Visual programming: Ivan Avelar Promotion Brazilian Computer
    [Show full text]
  • ESA: a CLIM Library for Writing Emacs-Style Applications
    ESA: A CLIM Library for Writing Emacs-Style Applications Robert Strandh Troels Henriksen LaBRI, Université Bordeaux 1 DIKU, University of Copenhagen 351, Cours de la Libération Universitetsparken 1, Copenhagen 33405 Talence Cedex [email protected] France [email protected] David Murray Christophe Rhodes ADMurray Associates Goldsmiths, University of London 10 Rue Carrier Belleuse, 75015 Paris New Cross Road, London, SE14 6NW [email protected] [email protected] ABSTRACT style applications. The central distinguishing feature of an We describe ESA (for Emacs-Style Application), a library Emacs-style application, for our purposes, is that it uses for writing applications with an Emacs look-and-feel within short sequences of keystrokes as the default method of in- the Common Lisp Interface Manager. The ESA library voking commands, and only occasionally requires the user to takes advantage of the layered design of CLIM to provide a type the full name of the command in a minibuffer. A spe- command loop that uses Emacs-style multi-keystroke com- cial keystroke (M-x) is used to invoke commands by name. mand invocation. ESA supplies other functionality for writ- This interaction style is substantially different from the one ing such applications such as a minibuffer for invoking ex- provided by CLIM by default, and therefore required us to tended commands and for supplying command arguments, write a different CLIM top level. Fortunately, CLIM was Emacs-style keyboard macros and numeric arguments, file designed to make this not only possible but fairly straight- and buffer management, and more. ESA is currently used forward, as the implementation of a replacement top level in two major CLIM applications: the Climacs text editor can build on the protocol layers beneath, just as the default (and the Drei text gadget integrated with the McCLIM im- top level is built.
    [Show full text]