Myc Proteins As Therapeutic Targets

Total Page:16

File Type:pdf, Size:1020Kb

Myc Proteins As Therapeutic Targets Oncogene (2010) 29, 1249–1259 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW Myc proteins as therapeutic targets WC Gustafson1,2 and WA Weiss1,3,4 1Department of Pediatrics, University of California, San Francisco, CA, USA; 2Division of Pediatric Hematology/Oncology, University of California, San Francisco, CA, USA; 3Department of Neurology, University of California, San Francisco, CA, USA and 4Department of Neurosurgery, University of California, San Francisco, CA, USA Myc proteins (c-myc, Mycn and Mycl) target prolifera- tumors and is the best characterized genetic-risk factor tive and apoptotic pathways vital for progression in for high-risk chemotherapy-refractory disease (Brodeur cancer. Amplification of the MYCN gene has emerged et al., 1984; Seeger et al., 1985; Riley et al., 2004). as one of the clearest indicators of aggressive and Deletion or suppression of caspase 8, loss of chromo- chemotherapy-refractory disease in children with neuro- somes 1p and 11q, and gain of 17q also correlate with blastoma, the most common extracranial solid tumor of aggressive disease (Bown et al., 1999; Guo et al., 1999; childhood. Phosphorylation and ubiquitin-mediated mod- Riley et al., 2004; Attiyeh et al., 2005; Stupack et al., ulation of Myc protein influence stability and represent 2006; Maris et al., 2008b). potential targets for therapeutic intervention. Phosphor- In contrast with most other treatment-refractory ylation of Myc proteins is controlled in-part by the cancers, neuroblastomas, irrespective of risk group, receptor tyrosine kinase/phosphatidylinositol 3-kinase/ generally respond to initial therapy, which typically Akt/mTOR signaling, with additional contributions from includes high doses of chemotherapy (Park et al., 2008). Aurora A kinase. Myc proteins regulate apoptosis in part Low- and intermediate-risk patients are subsequently through interactions with the p53/Mdm2/Arf signaling cured and rarely progress. Patients with high-risk pathway. Mutation in p53 is commonly observed in disease typically relapse with treatment-refractory tu- patients with relapsed neuroblastoma, contributing to mors. It is conceivable that low- and high-risk neuro- both biology and therapeutic resistance. This review blastoma are entirely separate disease entities. Overall, examines Myc function and regulation in neuroblastoma, prognosis in the high-risk group is quite poor, with long- and discusses emerging therapies that target Mycn. term survival of 30–40%. Oncogene (2010) 29, 1249–1259; doi:10.1038/onc.2009.512; published online 25 January 2010 Familial neuroblastoma Keywords: myc; mycn; neuroblastoma; N-myc; mTor; PI3K Neuroblastoma may be associated with Hirschsprung disease and neurofibromatosis type 1 (Clausen et al., 1989; Rohrer et al., 2002). Mutations in PHOX2B,a homeodomain-containing transcription factor important Introduction for the development in the autonomic nervous system, underlie the congenital central hypoventilation syndrome Neuroblastoma, a neoplasm of peripheral neural crest and confer a heritable predisposition to neuroblastoma; origin, is the most common malignant extracranial solid however, these mutations are not found in spontaneous tumor of childhood and accounts for 15% of cancer tumors (Mosse et al.,2004;Trochetet al.,2005;Raabe deaths in children (Park et al., 2008). Approximately 650 et al., 2008). In fact, familial neuroblastoma is quite rare, new cases are diagnosed in the United States annually and is most often because of dominant gain-of-function with peak incidence in early childhood (ages 0–4 years). mutations in the orphan receptor tyrosine kinase (RTK) The most common site of origin is in the adrenal anaplastic lymphoma kinase (ALK). ALK, which is linked medulla; however, tumors can occur anywhere along the to MYCN on chromosome 2p23, also shows sporadic gain- sympathetic chain. of-function mutation in 8% of spontaneous tumors (Chen Patients with new diagnoses are typically stratified et al., 2008; George et al., 2008; Janoueix-Lerosey et al., into risk groups based on age, stage, histopathology, 2008; Mosse´et al., 2008). Although direct connections DNA index and genetic/genomic factors. Amplification between MYCN and ALK have yet to be elucidated, of the proto-oncogene MYCN occurs in B25% of activation of Alk and other RTKs may contribute to stabilization of Mycn protein (detailed below). Correspondence: Dr WC Gustafson, Pediatric Hematology/Oncology, University of California, Helen Diller Family Cancer Research Myc family of proto-oncogenes Building, 1450 3rd Street, San Francisco, CA 94158-9001, USA. E-mail: [email protected] Received 22 September 2009; revised 9 December 2009; accepted 15 Broadly implicated in oncogenesis, the human MYC December 2009; published online 25 January 2010 family of proto-oncogenes is among the most studied Mycn signaling in neuroblastoma WC Gustafson and WA Weiss 1250 genes in cancer (Meyer and Penn, 2008). Early inser- Chromatin immunoprecipitation experiments show tional mutagenesis studies in mouse identified c-MYC that c-Myc and Mycn proteins bind to promoters with (homologous to the v-myc gene that drives avian variable specificity determined by DNA ultrastructure myelocytosis) as capable of transformation by retroviral and cellular context (Fernandez et al., 2003; Li et al., promoter insertion (Payne et al., 1982). MYCN was 2003; Mao et al., 2003; Chen et al., 2004; Guccione subsequently identified as an MYC homolog amplified et al., 2006; Zeller et al., 2006; Kim et al., 2008; in neuroblastoma tumors (reviewed in Meyer and Penn, Martinato et al., 2008; Westermann et al., 2008). Myc/ 2008). Amplification of MYCN has emerged as among Max heterodimers bind to E-boxes and interact with a the clearest genetic indicators of high-risk, aggressive variety of histone modifiers, increasing histone acetyla- disease (Brodeur et al., 1984; Seeger et al., 1985). MYC tion (Bouchard et al., 2001). These alterations modify family members (c-MYC, MYC and MYCL) show chromatin at promoters, affecting gene expression differential expression in normal tissues. Expression of (McMahon et al., 2000; Frank et al., 2001; Vervoorts murine N-myc in particular is elevated in normal et al., 2003; Guccione et al., 2006; Martinato et al., 2008; mammalian developing retina, forebrain, hindbrain, Liu et al., 2009). In fact, histone modification by Mycn intestine, kidney and has functions in neuronal progeni- effectors is being exploited pharmacologically using tor cells, developing lung tissues, hematopoetic stem histone deacetylase inhibitors. These drugs may alter cells and programmed cell death in the developing limb acetylation in neuroblastomas and other MYC depen- (Zimmerman et al., 1986; Mugrauer et al., 1988; Downs dent processes thereby modulating transcription (re- et al., 1989; Hirvonen et al., 1990; Hirning et al., 1991; viewed in Witt et al., 2009). Knoepfler et al., 2002; Bettess et al., 2005; Okubo et al., Several studies have attempted to elucidate specific 2005; Ota et al., 2007; Martins et al., 2008; Xu et al., transcriptional targets for Mycn in neuroblastoma 2009). (Alaminos et al., 2003). A large number of targets Myc proteins are basic helix-loop-helix leucine zipper important for cell cycle control and differentiation have transcription factors. Mycn and c-Myc proteins share been characterized, including: downregulation of SKP2 several regions of homology and share similar cellular and TP53INP1 with resultant decrease in p21WAF1 (Bell functions. Myc proteins localize to the nucleus and form et al., 2007), downregulation of DKK1 upstream of the heterodimers with the basic helix-loop-helix molecule, wnt/b-catenin pathway (Koppen et al., 2007), upregula- Max (Blackwood and Eisenman, 1991; Prendergast tion of NLRR1 both important in neural cell prolifera- et al., 1991; Berberich and Cole, 1992; Blackwood tion (Hossain et al., 2008), downregulation of Fyn et al., 1992; Kato et al., 1992). Myc/Max heterodimers kinase important in differentiation (Berwanger et al., bind to DNA at specific CAC(G/A)TG ‘E-box’ se- 2002), regulation of multiple genes responsible for quences to drive transcription of targets important for pluripotency (Cotterman and Knoepfler, 2009) and proliferation, apoptosis and differentiation (Blackwell modulation of apoptosis by upregulation of p53 and et al., 1990, 1993; Amati et al., 1992; Kretzner et al., Mdm2 (Slack et al., 2005b). The multidrug resistance 1992). Max also heterodimerizes with Mxd or Mnt gene MRP1 is regulated by Mycn, driving chemotherapy proteins to influence the transcription of other down- resistance (Manohar et al., 2004). Importantly, Mycn stream genes and often to antagonize the proliferative upregulates oncogenic microRNAs, which have wide effects of Myc proteins (Ayer et al., 1993; Zervos et al., ranging effects on cancer (reviewed in Schulte et al., 1993; Hurlin et al., 1995, 1997; Walkley et al., 2005). In 2009). Mycn also controls several proteins important in many systems, Mxd/Max or Mnt/Max heterodimers ribosome biogenesis (Boon et al., 2001) affecting protein oppose the actions of Myc/Max to repress transcription; synthesis (reviewed in Ruggero, 2009). however, very little is known about these interactions in Different groups seeking to stratify neuroblastoma neuroblastoma (Grandori et al., 2000; Patel et al., 2004). risk using gene expression micoarrays have generated The complex competition among Myc, Mxd and Mnt gene lists that are largely non-overlapping (Berwanger
Recommended publications
  • MYCL Promotes Ipsc-Like Colony Formation Via MYC Box 0 and 2 Domains
    MYCL promotes iPSC-like colony formation via MYC Box 0 and 2 domains Chiaki Akifuji Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Mio Iwasaki Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Yuka Kawahara Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Chiho Sakurai Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Yusheng Cheng Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Takahiko Imai Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Masato Nakagawa ( [email protected] ) Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University Research Article Keywords: mycl, reprogramming, ipsc, eciency, induced Posted Date: August 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-817686/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 MYCL promotes iPSC-like colony formation via MYC Box 0 and 2 domains 2 3 Authors 4 Chiaki Akifuji1, Mio Iwasaki1, Yuka Kawahara1, Chiho Sakurai1, Yusheng Cheng1, Takahiko 5 Imai1, and Masato Nakagawa1* 6 7 Affiliation 8 1 Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), 9 Kyoto University, Kyoto 606-8507, Japan 10 11 *Correspondence: [email protected] 12 13 Abstract 14 Induced pluripotent stem cells (iPSCs) have the potential to differentiate into any cell in 15 the body and thus have attractive regenerative medicine potential.
    [Show full text]
  • A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7120–7136 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7120–7136.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C. F. Mulder,2 Akihiro Iwamatsu,3 Min Jae Lee,1 Ilia V. Davydov,4† Alexander Varshavsky,4 Mark Muesing,2 and Yong Tae Kwon1* Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 152611; Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 100162; Protein Research Network, Inc., Yokohama, Kanagawa 236-0004, Japan3; and Division of Biology, California Institute of Technology, Pasadena, California 911254 Received 15 March 2005/Returned for modification 27 April 2005/Accepted 13 May 2005 A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1؊/؊ UBR2؊/؊ mice die as early embryos, the rescued UBR1؊/؊ UBR2؊/؊ fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD.
    [Show full text]
  • An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell, Vol, 80, 777-786, March 10, 1995, Copyright © 1995 by Cell Press An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3 Nicole Schreiber-Agus,*t Lynda Chin,*tt Ken Chen,t et al., 1990), and a carboxy-terminal a-helical domain re- Richard Torres, t Govinda Rao,§ Peter Guida,t quired for dimerization with another basic region-helix- Arthur h Skoultchi,§ and Ronald A. DePinhot Ioop-helix-leucine zipper (bHLH-LZ) protein, Max (Black- "rDepartments of Microbiology and Immunology wood and Eisenman, 1991; Prendergast et al., 1991). and of Medicine Many of the biochemical and biological activities of Myc §Department of Cell Biology appear to be highly dependent upon its association with ~Division of Dermatology Max (Blackwood and Eisenman, 1991 ; Prendergast et al., Albert Einstein College of Medicine 1991; Kretzner et al., 1992; Amati et al., 1993a, 1993b). Bronx, New York 10461 In addition to its key role as an obligate partner in transacti- vation-competent Myc-Max complexes, Max may also re- press Myc-responsive genes through the formation of Summary transactivation-inert complexes that are capable of bind- ing the Myc-Max recognition sequence (Blackwood et al., Documented interactions among members of the Myc 1992; Kato et al., 1992; Kretzner et al., 1992; Makela et superfamily support a yin-yang model for the regula- al., 1992; Mukherjee et al., 1992; Prendergast et al., 1992; tion of Myc-responsive genes in which t ransactivation- Ayer et al., 1993; Zervos et al., 1993).
    [Show full text]
  • Original Article MYCN-Mediated Regulation of the HES1 Promoter Enhances the Chemoresistance of Small-Cell Lung Cancer by Modulating Apoptosis
    Am J Cancer Res 2019;9(9):1938-1956 www.ajcr.us /ISSN:2156-6976/ajcr0100301 Original Article MYCN-mediated regulation of the HES1 promoter enhances the chemoresistance of small-cell lung cancer by modulating apoptosis Qin Tong1,2*, Shuming Ouyang3*, Rui Chen1, Jie Huang4, Linlang Guo1 1Department of Pathology, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, People’s Republic of China; Departments of 2Radiation Oncology, 3Reproductive Medicine, The First Affiliated Hospital of University of South China, Hengyang 421001, People’s Republic of China; 4Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, People’s Republic of China. *Equal contributors. Received June 29, 2019; Accepted August 10, 2019; Epub September 1, 2019; Published September 15, 2019 Abstract: MYCN, a member of the MYC family, is correlated with tumorigenesis, metastasis and therapy in many malig nancies; however, its role in small-cell lung cancer (SCLC) remains unclear. In this study, we sought to identify the function of MYCN in SCLC chemoresistance and found that MYCN is overexpressed in chemoresistant SCLC cells. We used MYCN gain- and loss-of- function experiments to demonstrate that MYCN promotes in vitro and in vivo chemoresistance in SCLC by inhibiting apoptosis. Mechanistic investigations showed that MYCN binds to the HES1 promoter and exhibits transcriptional activity. Furthermore, MYCN mediated SCLC chemoresistance through HES1. Accordingly, the NOTCH inhibitor FLI-60 derepressed HES1 and diminished MYCN-induced chemoresistance in SCLC. Finally, the positive correlation between HES1 and MYCN was confirmed in SCLC patients.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Targeting MYC-Induced Metabolic Reprogramming and Oncogenic Stress in Cancer
    Author Manuscript Published OnlineFirst on July 29, 2013; DOI: 10.1158/1078-0432.CCR-12-3629 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Molecular Pathways: Targeting MYC-induced Metabolic Reprogramming and Oncogenic Stress in Cancer Bo Li and M. Celeste Simon Authors’ affiliation: Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Howard Hughes Medical Institute, Philadelphia, Pennsylvania Corresponding author: M. Celeste Simon, 456 BRB II/III, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104. Phone: 215-746-5532; Fax: 215-746-5511; Email: [email protected] Grant support: The authors’ laboratory is supported by the Howard Hughes Medical Institute and by NIH Grant CA104838 (to M.C. Simon). M.C. Simon is an Investigator of the Howard Hughes Medical Institute. The authors have no conflicts of interest. Abstract MYC is a multi-functional transcription factor that is deregulated in many human cancers. MYC impacts a collaborative genetic program that orchestrates cell proliferation, metabolism, and stress responses. Although the progression of MYC-amplified tumors shows robust dependence on MYC activity, directly targeting MYC as a therapeutic method has proven to be technically difficult. Therefore, alternative approaches are currently under development with a focus on interference with MYC-mediated downstream effects. To fuel rapid cell growth, MYC reprograms cancer cell metabolism in a way that is substantially different from normal cells. The MYC-induced metabolic signature is characterized by enhanced glucose and glutamine uptake, increased lactate production, and altered amino acid metabolism.
    [Show full text]
  • Transcriptome Analysis of the Uterus of Hens Laying Eggs Differing in Cuticle Deposition Sandra Poyatos Pertiñez1* , Peter W
    Poyatos Pertiñez et al. BMC Genomics (2020) 21:516 https://doi.org/10.1186/s12864-020-06882-7 RESEARCH ARTICLE Open Access Transcriptome analysis of the uterus of hens laying eggs differing in cuticle deposition Sandra Poyatos Pertiñez1* , Peter W. Wilson1, Wiebke Icken2, David Cavero3, Maureen M. Bain4, Anita C. Jones5 and Ian C. Dunn1 Abstract Background: Avian eggs have a proteinaceous cuticle. The quantity of cuticle varies and the deposition of a good cuticle in the uterus (Shell-gland) prevents transmission of bacteria to the egg contents. Results: To understand cuticle deposition, uterus transcriptomes were compared between hens with i) naturally good and poor cuticle and, ii) where manipulation of the hypothalamo-pituitary-gonadal-oviduct axis produced eggs with or without cuticle. The highest expressed genes encoded eggshell matrix and cuticle proteins, e.g. MEPE (OC-116), BPIFB3 (OVX-36), RARRES1 (OVX-32), WAP (OVX-25), and genes for mitochondrial oxidative phosphorylation, active transport and energy metabolism. Expression of a number of these genes differed between hens laying eggs with or without cuticle. There was also a high expression of clock genes. PER2, CRY2, CRY1, CLOCK and BMAL1 were differentially expressed when cuticle deposition was prevented, and they also changed throughout the egg formation cycle. This suggests an endogenous clock in the uterus may be a component of cuticle deposition control. Cuticle proteins are glycosylated and glycosaminoglycan binding genes had a lower expression when cuticle proteins were deposited on the egg. The immediate early genes, JUN and FOS, were expressed less when the cuticle had not been deposited and changed over the egg formation cycle, suggesting they are important in oviposition and cuticle deposition.
    [Show full text]
  • Lineage Transcription Factors Co-Regulate Subtype-Specific Genes Providing a Roadmap For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249029; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lineage transcription factors co-regulate subtype-specific genes providing a roadmap for systematic identification of small cell lung cancer vulnerabilities Karine Pozo1,2, Rahul K. Kollipara3, Demetra P. Kelenis1, Kathia E. Rodarte1, Xiaoyang Zhang4, John D. Minna5,6,7,8 and Jane E. Johnson1,6,8 1Department of Neuroscience, 2Department of Surgery, 3McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA 4Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 5Hamon Center for Therapeutic Oncology Research, 6Simmons Comprehensive Cancer Center, 7Department of Internal Medicine, 8Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA JDM receives licensing fees for lung cancer lines from the NIH and UT Southwestern. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249029; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Lineage-defining transcription factors (LTFs) play key roles in tumor cell growth, making them highly attractive, but currently “undruggable”, small cell lung cancer (SCLC) vulnerabilities.
    [Show full text]
  • Constitutive Expression of Ectopic C-Myc Delays Glucocorticoid-Evoked Apoptosis of Human Leukemic CEM-C7 Cells
    Oncogene (2001) 20, 4629 ± 4639 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells Rheem D Medh*,1, Aixia Wang1, Feng Zhou2 and E Brad Thompson*,1 1Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas, TX-77555-0645, USA Sensitivity to glucocorticoid (GC)-evoked apoptosis in roles in normal thymocyte selection and in the therapy lymphoid cell lines correlates closely with GC-mediated of lymphoid malignancies (Gaynon and Carrel, 1999; suppression of c-Myc expression. To establish a Leung and Munck, 1975). GC-evoked lympholytic functional role for c-Myc in GC-mediated apoptosis, responses are mediated via the GC receptor (GR), we have stably expressed MycERTM, the human c-Myc and can be blocked by the GR antagoinst RU 38486 protein fused to the modi®ed ligand-binding domain of (Homo-Delarche, 1984; Thompson et al., 1995). the murine estrogen receptor a, in GC-sensitive CEM- Ligand-activated GR is known to function as a C7-14 cells. In CEM-C7-14 cells, MycERTM constitu- transcription factor for numerous genes; hence the tively imparts c-Myc functions. Cells expressing My- current hypothesis for GC-evoked apoptosis favors cERTM (C7-MycERTM) exhibited a marked reduction in receptor mediated alteration in expression of key cell death after 72 h in 100 nM dexamethasone (Dex), vitality and/or death genes (Medh and Thompson, with 10 ± 20-fold more viable cells when compared to the 2000; Montague and Cidlowski, 1995; Thompson, parental CEM-C7-14 clone.
    [Show full text]
  • Nutrigenomics
    Nutrigenomics Carsten Carlberg • Stine Marie Ulven Ferdinand Molnár Nutrigenomics Carsten Carlberg Stine Marie Ulven Institute of Biomedicine Department of Nutrition University of Eastern Finland University of Oslo Kuopio , Finland Oslo , Norway Ferdinand Molnár School of Pharmacy University of Easterm Finland Kuopio , Finland ISBN 978-3-319-30413-7 ISBN 978-3-319-30415-1 (eBook) DOI 10.1007/978-3-319-30415-1 Library of Congress Control Number: 2016939131 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland Pref ace Our daily diet is more than a collection of carbohydrates, lipids and proteins that provide energy and serve as building blocks of our life; our diet is also the most dominant environmental signal to which we are exposed from womb to death.
    [Show full text]
  • Allele Frequencies of MYCL and MYB Protooncogenes in Unrelated Healthy Japanese
    Jpn. J. Human Genet. 34, 251-252, 1989 Letter to the Editor Allele Frequencies of MYCL and MYB Protooncogenes in Unrelated Healthy Japanese To the Editor: Polymorphic DNA segments detected by restriction fragment length polymor- phisms (RFLPs) are used as markers for inherited human diseases, and also for studying malignancies, the objective being to search for possible associations with tumor predisposition and/or progression. We studied the allele frequencies of MYCL and MYB in unrelated healthy Japanese. In the two loci, EcoRI RFLPs which were explained by a diallelic system have been reported (Table 1). The RFLPs of MYCL and MYB were studied using Southern blot analyses in the EcoRI-digested placental DNAs (27 males and 24 females) obtained from 51 healthy Japanese obstetrical patients. The Mendelian inheritance was con- firmed in peripheral blood samples obtained from 6 members of a single family. Probes were prepared from the following plasmids: Vector/probe size/cloning site is pJB327/1.8 kb/SmaI-EcoRI for MYCL (Nau et al., 1985) and pBR322/2.6 kb/ EcoRI for MYB (Franchini et al., 1983), kindly provided by Dr. J. D. Minna and Dr. S. R. Tronick through the Japanese gene bank of JCRB, respectively. The allele frequencies obtained are presented in Table 1. Data on European Caucasians are listed for comparison. Differences between Japanese and Cau- casians were not statistically significant in both loci by chi-square test and between Japanese males and females (MYCL: p>0.5, MYB: p>0.1, data not shown). The frequency of MYCL alleles was also obtained in a larger number of Japanese, AI: 0.46 and A2: 0.54, by Dr.
    [Show full text]