Framing Artwork on Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Matboard
FRAMING FUNDAMENTALS by Jared Davis, MCPF, GCF Understanding Matboard Being the best frame shop in your area starts with the best products. atboard is a fundamental compo- Mnent of almost every framed pic- ture. However, understanding the vast range of information and choices avail- able in matboards can be daunting. In this article, I aim to provide some useful insights about matboard to help you to dispel some of the myths and decipher some of the facts about this vital aspect of our profession. The two primary purposes for matboard that the introduction of a matboard can in- Different grades of matboard are are to provide protection for the artwork and crease both the size and level of value in the designed for to enhance the framing design. sale of a frame. different appli- cations. Under- 1) Protect. The last consumer survey con- standing which choice to make is ducted by the Professional Picture Fram- How Matboard is Made important to both ers Association found that the num- Matboards are comprised of layers of pa- your customer and your business. ber-one reason why a consumer chose to per of various thickness, laminated together. custom frame an artwork was to protect The papers and core of a matboard are made the item. Preservation, clearly, is of prima- from either unpurified wood pulp, purified al- ry importance to your customer. pha-cellulose wood pulp, or in the case of mu- 2) Enhance. A matboard can help the view- seum-grade board, cotton linter pulp. er to focus correctly on the image. -
History and Treatment of Works in Iron Gall Ink September 10-14, 2001, 9:30-5:30 Daily Museum Support Center Smithsonian Center for Materials Research and Education
2001 RELACT Series The History and Treatment of Works in Iron Gall Ink September 10-14, 2001, 9:30-5:30 daily Museum Support Center Smithsonian Center for Materials Research and Education Instructors: Birgit Reibland, Han Neevel, Julie Biggs, Margaret Cowan Additional Lecturers: Jacque Olin, Elissa O'Loughlin, Rachel-Ray Cleveland, Linda Stiber Morenus, Heather Wanser, Abigail Quandt, Christine Smith, Maria Beydenski, Season Tse, Elmer Eusman, Scott Homolka This 3-day course (offered twice in one week for 2 separate groups of participants) focuses on one of the most corrosive media problems found on documents and works of art on paper. The 2-day workshop and 1 interim day of lectures cover the production of inks from historic recipes; historic drawing and writing techniques; identification, examination and classification of deterioration; and the execution of treatment options, including the use of calcium phytate solution. The interim day of lectures will feature local and international conservators' research into the history and treatment of works with iron gall ink. The course represents the first time iron gall ink has been the primary focus of an international gathering in the United States. Registration deadline for the full course is July 1 or until the course is filled with qualified applicants; for the interim day of lectures only, participants have until August 29 to register. Limit for Interim Day of Lectures: 30 Lunch and handouts provided Cost: $ 75.00 Registration deadline August 29 The 3-day course is fully enrolled. Places still remain for the Interim Day of Lectures. Please contact Mary Studt, [email protected] or 301-238-3700 x149 for further information and application materials. -
Basics of Kraft Pulping
Lignin Wood is composed of many chemical components, primarily extractives, carbohydrates, and lignin, which are distributed nonuniformly as the result of anatomical structure. Lignin is derived from the Latin term lignum, which means wood.1 Anselme Payen (1838) was the first to recognize the composite nature of wood and referred to a carbon- rich substance as the “encrusting material” which embedded cellulose in the wood. Schulze (1865) later defined this encrusting material as lignin. Lignin has been described as a random, three-dimensional network polymer comprised of variously linked phenylpropane units.2 Lignin is the second most abundant biological material on the planet, exceeded only by cellulose and hemicellulose, and comprises 15-25% of the dry weight of woody plants. This macromolecule plays a vital role in providing mechanical support to bind plant fibers together. Lignin also decreases the permeation of water through the cell walls of the xylem, thereby playing an intricate role in the transport of water and nutrients. Finally, lignin plays an important function in a plant’s natural defense against degradation by impeding penetration of destructive enzymes through the cell wall. Although lignin is necessary to trees, it is undesirable in most chemical papermaking fibers and is removed by pulping and bleaching processes. 1.1.1 Biosynthesis Plant lignins can be broadly divided into three classes: softwood (gymnosperm), hardwood (angiosperm) and grass or annual plant (graminaceous) lignin.3 Three different phenylpropane units, or monolignols, are responsible for lignin biosynthesis.4 Guaiacyl lignin is composed principally of coniferyl alcohol units, while guaiacyl-syringyl lignin contains monomeric units from coniferyl and sinapyl alcohol. -
Preserving Your Memories Enjoy Your Favourite Photos Every Day with These Three Crafty Framing Projects
Handmade Preserving your memories Enjoy your favourite photos every day with these three crafty framing projects. Words and styling Sarah Heeringa. Photography Amanda Reelick Photographs top left, centre and bottom middle by Sarah Heeringa Opposite page: Project #1: Hanging photo wall A simple and cost-effective photo display, ideal for when you cannot make multiple holes in the walls. This page, bottom left: Attach your hanging photo wall strings using a large, flat surface. Clockwise from middle right: Project #3: Photo gallery Use accent colours on selected frames; use paper templates when hanging photos; seal frames using picture framing tape. Top left, middle and main image: Project #2: Upcycle an old frame Dissasemble old frames to paint and re-assemble. 74 75 Handmade PROJECT #1 PROJECT #2 PROJECT #3 Hanging Upcycling Composing a photo wall an old frame photo gallery You need: You need: You need: · up to 20 square photographs (all 10cm x · a photograph · a second-hand picture frame · coordinated photo frames · dark thread 10cm) · white card, medium thickness, cut that includes an outer frame, firm backing · Blu-Tack · spirit level · roll of newsprint, into squares (8cm x 8cm) · white string · board and a mat or mounting board · glazier brown paper or newspaper · hammer and spray adhesive or glue stick · scissors and points or tiny nails · masking tape · wide nails · picture hanging hooks or adhesive ruler · A branch or length of bamboo brown picture framing tape · small pliers hanging strips · step-ladder or stool (paint white if you wish) · 1 metre of nylon line · hammer · nylon line · D-ring or small screws · small stones (optional) · Blu-Tack · small paintbrush · dropcloth · Resene Step 1: Pick photos Summer is great for Enamacryl enamel for the frame (I used taking photos, but how many of our images Step 1: Prepare and print images Resene Breathless) and Resene SpaceCote from this season or years past lie dormant on Adjust the photographs before printing to Flat for the mat (I used Resene Black White). -
The Use of Old Corrugated Board in the Manufacture of High Quality White Papers
Western Michigan University ScholarWorks at WMU Paper Engineering Senior Theses Chemical and Paper Engineering 12-1983 The Use of Old Corrugated Board in the Manufacture of High Quality White Papers Rene H. Kapik Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/engineer-senior-theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Kapik, Rene H., "The Use of Old Corrugated Board in the Manufacture of High Quality White Papers" (1983). Paper Engineering Senior Theses. 209. https://scholarworks.wmich.edu/engineer-senior-theses/209 This Dissertation/Thesis is brought to you for free and open access by the Chemical and Paper Engineering at ScholarWorks at WMU. It has been accepted for inclusion in Paper Engineering Senior Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu- [email protected]. THE USE OF OLD CORRUGATED BOARD IN THE MANUFACTURE OF HIGH QUALITY WHITE PAPERS by Rene' H. Kapik A Thesis submitted in partial fulfillment of the course requirements for The Bachelor of Science Degree Western Michigan University Kalamazoo, Michigan December, 1983 ABSTRACT Clean corrugated board waste was fractionated into its softwood/ hardwood fiber components, repulped using a kraft pulping process, and bleached using a CEHD bleaching sequence in an effort to produce high brightness fiber suitable for use in medium to high quality white paper. The papers produced had almost equivalent mechanical strengths and opacity, but possessed unsatisfactory brightness and cleanliness when compared to commercially manufactured,:. bleached kraft pulps of identical softwood/hardwood contents. Based on this experimental data, the use of recycled fiber from corrugated board as a fiber substitute in the manufacture of high quality printing and writing papers is not recommended due to its inferior brightness and cleanliness. -
Matting and Framing
Matting and Framing Ford Conservation Center 2017 Basics of Matting and Framing Matting and framing is used to display, store, and safeguard works of art of pa- per, archives, and family documents. Proper matting and framing can help to protect these items from deterioration due to changing relative humidity, light exposure, handling, and other sources of damage. The following information is intended to explain the basics of mat- ting, framing, and hanging art or other paper-based items. Consult a conserva- tor for specific questions. See a framer you trust for help with your matting and framing needs. Inside this issue: M a t t i n g Matting 1 Matting, matboard, or mat (all used window mat held together with a Hinging 2 interchangeably) is flat, paper- strip of linen tape. The object is at- based material used to separate art tached to the back mat with hinges Adhesives 2 from a frame. Matboard is used to made of special Japanese tissue securely house works on paper. paper. Hinging is preferred over Framing 3 Matboard comes in various sizes, commercial tapes because it allows colors, weights and types of materi- for easy removal of the object with Hanging 4 al. minimal use of adhesive. The win- dow mat construction allows the A mat for an object is a series of Consulting a Conser- 5 object to be seen while protecting vator pieces constructed to protect the it from handling while the back Additional Resources 5 object. It includes a back mat and mat provides structural support for Matting and Framing the object. -
Paper Recycling Technology Detailed Part 1A
Paper Recycling Technology and Science Dr. Richard A. Venditti Paper Science and Engineering Forest Biomaterials Department North Carolina State University Lecture: Paper recycling and technology course introduction and objectives Dr. Richard Venditti Faculty member in the Paper Science and Engineering Program in the Forest Biomaterials Department at North Carolina State University PhD in Chemical Engineering, BS in Pulp and Paper Science and Chemical Engineering Research areas: � Paper recycling � Utilization of forest/agricultural materials for new applications � Life cycle analysis Named a TAPPI Fellow in 2012 Relevant research projects: – The detection of adhesive contaminants – The changes in fibers upon recycling – Automatic sorting of recovered papers – Flotation deinking surfactants – Agglomeration deinking – Screening phenomena and pressure sensitive adhesives – Deposition of adhesive contaminants – Neural networks to control deinking operations – Sludge conversion to bio-ethanol and to bio- materials Course Outline The US Paper Recycling Industry Recovered Paper Grades and Contaminants Effect of Recycling on Fibers/Paper Unit Operations � Pulping, Cleaning, Screening, Washing, Flotation, Dispersion, Bleaching, ….. Image Analysis, Deinking Chemicals System Design Advanced/Additional Topics Course Activities Viewing of the Videos of Lectures � Base lectures by Venditti � Guest lectures from industry leaders Homework assignments Final Exam Critical Issues in Recycling: Going deeper into the recovered paper stream -
Sizes and Specifications
Sizes and Specifications Newsprint display sizes & specs ................................2 Newsprint reproduction tips ......................................3 Book of Lists sizes & specs ........................................5 How to submit print ads .............................................6 Online and email advertising ......................................7 Questions? Contact [email protected] Newsprint display advertising sizes Pacific Business News is an untrimmed, cold-set, tabloid newspaper on newsprint that measures approximately 10.5 inches wide x 14 inches tall. 1/2 Vertical 4.5 x 12.5 2 Page Spread Full Island 3/8 Horizontal 3/8 Vertical 19.75 x 12.5 9.25 x 12.5 6.875 x 12.5 6.875 x 6.125 4.5 x 9.325 1/2 Horizontal 9.25 x 6.125 L or Reverse L Triangle Triangle Centerpiece Towers: 2.125 x 11.85 Middle Right 1/4 Vertical 1/4 Strip U-Shape Bottom Strip: 9.25 x 0.85 9.25 x 6.125 6.875 x 8.5 2.125 x 12.5 9.25 x 2.9375 Towers: 2.125 x 11.85 Bottom Strip: 19.75 x 0.85 1/8 Horizontal 1/8 Vertical Centerpiece Towers 4.5 x 2.9375 2.125 x 6.125 2.125 x 11.85 Centerstrip 1/4 Square 1/8 Strip 19.75 x 2.9375 4.5 x 6.125 9.25 x 1.35 PAGE 2 OF 7 PACIFIC BUSINESS NEWS » 2017 SIZES AND SPECIFICATIONS Requirements for newsprint display ads Specifications for submitting your documents for print Camera-ready files • Ads must be submitted as PDF/X-1a files • Files must be prepared in a layout program such as InDesign. -
4-10 Matting and Framing.Pdf
PRESERVATION LEAFLET CONSERVATION PROCEDURES 4.10 Matting and Framing for Works on Paper and Photographs NEDCC Staff NEDCC Andover, MA The importance of proper matting, mounting and framing Do not use any type of foam board such as Fom-cor®, is often overlooked as a key part of collections care and “archival” paper faced foam boards, Gator board, preventative conservation. Poor quality materials and expanded PVC boards such as Sintra® or Komatex®, any improper framing techniques are a common source of lignin containing paper-based mat boards, kraft (brown) damage to artwork and cultural heritage materials that paper, non-archival or self-adhesive tapes (i.e. document are in otherwise good condition. Staying informed about repair tapes), or ATG (adhesive transfer gum), all of which proper framing practices and choosing conservation-grade are used in the majority of frame shops. mounting, matting and framing can prevent many problems that in the future will be much more difficult to MATTING solve or even completely irreversible. As Benjamin Franklin said, “An ounce of prevention is worth a pound of The window mat is the standard mount for works on cure.” paper. The ideal window mat will be aesthetically pleasing while safely protecting the piece from exterior damage. Mats are an excellent storage method for works on paper CHOICE OF A FRAMER and can minimize the damage caused from handling in When choosing a framer it is important to find someone collections that are used for exhibition and study. Some well-informed about best conservation framing practices institutions simplify their framing and storage operations and experienced in implementing them. -
Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment
Forest Products BestPractices Plant-Wide Assessment Case Study Industrial Technologies Program—Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment BENEFITS Summary • Saves an estimated 11,000 MWh of Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, electricity annually Georgia, plant in the spring and summer of 2001. The objectives of the assessment were to • Saves an estimated $1.6 million identify systems and operations that were good candidates for energy-efficiency improvements, annually from energy reduction and then ascertain specific energy saving projects. The assessment team identified the thermo- other improvements mechanical pulp (TMP) mill, the recycled newsprint plant (RNP), and the No. 1 and No. 2 • Improves system efficiency and paper machines area as the systems and operations on which to focus. The project evaluation reliability process was unique for two reasons, (1) much of the steam is a by-product of the TMP process and, because it is essentially “free,” it precludes opportunities for steam conservation • Produces a more consistent product initiatives; and (2) the company is reportedly Georgia’s largest electricity customer and • Project paybacks range from consequently has very favorable rates. 4.3 to 21.4 months Despite these perceived disincentives, the company found strong economic justification for five projects that would reduce electricity consumption. Four of the five projects, when complete, will save the company 11,000 MWh of electrical energy each year ($369,000 per year). The APPLICATION remaining project will produce more than $300,000 each year in the sale of a process The Augusta Newsprint plant-wide byproduct (turpentine). -
A Review of Wood Biomass-Based Fatty Acidsand Rosin Acids Use In
polymers Review A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials Laima Vevere *, Anda Fridrihsone , Mikelis Kirpluks and Ugis Cabulis Polymer Department, Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia; [email protected] (A.F.); [email protected] (M.K.); [email protected] (U.C.) * Correspondence: [email protected]; Tel.: +371-28869638 Received: 26 October 2020; Accepted: 14 November 2020; Published: 16 November 2020 Abstract: In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable oils, tall oil is considered as lignocellulosic plant biomass waste and is considered to be the second-generation raw material, thus it is not competing with the food and feed chain. The main purpose of this review article is to identify in what kind of polymeric materials wood biomass-based fatty acids and rosin acids have been applied and their impact on the properties. Keywords: crude tall oil; tall oil; fatty acids; rosin acids; polymer materials 1. Introduction The success of plastics as a commodity has been significant and polymer materials are a part of everyday life. The advantages of polymers over other materials can be attributed to their adjustable properties, low cost and ease of processing. Worldwide, the manufacturing of polymers grows every year, reaching almost 360 million tonnes in 2018 [1]. In the light of environmental challenges of the 21st century, the development of novel low-cost and scalable monomers from renewable resources is essential. -
Tall Oil Production and Processing
TALL OIL PRODUCTION AND PROCESSING Tall oil is a mixture of mainly acidic compounds found, like turpentine, in pine trees and obtained as a by-product of the pulp and paper industry. It is used as a resin in many different industries, including mining, paper manufacture, paint manufacture and synthetic rubber manufacture. It is extracted at the pulp and paper mill, and undergoes the first two processing steps there. Step 1 - Extraction of tall oil soap The "black liquor" from the paper making process is concentrated and left to settle. The top layer is known as "tall oil soap", and is skimmed off. The rest is recycled for further use in paper making. Step2 - Production of crude tall oil The tall oil soap is reacted with acid to form crude tall oil. The following reaction occurs: + + R—COONa + H3O → R—COOH + H2O + Na The acids formed from this reaction, along with small quantities of other compounds of similar volatility, make up the crude tall oil. All crude tall oil produced in New Zealand is then sent to a plant in Mt. Maunganui to complete processing. Step 3 - Crude tall oil distillation The oil is distilled into five components with different boiling points: heads (which boils first), then fatty acids, distilled tall oil (a mixture of fatty and resin acids), resin acids (collectively known as rosin) and pitch (the residue). All of these can be used in various industries as is, but some of the rosin is also further processed on site. Step 4 - Production of rosin paper size "Paper size" is the substance that stops all paper from behaving like blotting paper.