Nanoionics of Advanced Superionic Conductors

Total Page:16

File Type:pdf, Size:1020Kb

Nanoionics of Advanced Superionic Conductors 306 Ionics 11 (2005) Nanoionics of Advanced Superionic Conductors A.L. Despotuli, A.V. Andreeva and B. Rambabu* Institute of Microelectronics Technology & High Purity Materials RAS, 142432 Chernogolovka, Moscow Region, Russia *Southern University and A&M College, Baton Rouge, Louisiana, 70813 USA ~E-mail: [email protected] (A.L. Despotuli) Abstract. New scientific direction - nanoionics of advanced superionic conductors (ASICs) was proposed. Nanosystems of solid state ionics were divided onto two classes differing by an opposite influence of crystal structure defects on the ionic conductivity oi (energy activation E): 1) nanosystems on the base compounds with initial small o~ (large values of E); and II) nanosystems of ASICs (nano-ASICs) with E = 0.1 eV. The fundamental challenge of nanoionics as the conservation of fast ion transport (FIT) in nano-ASICs on the level of bulk crystal was first recognized and for the providing of FIT in nano- ASICs the conception of structure-ordered (coherent) ASIC//indifferent electrode (IE) hetero- boundaries was proposed. Nano-ASIC characteristic parameter P = d/Xo (d is the thickness of ASIC layer with the defect crystal structure at the heteroboundary, and Ao is the screening length of charge for mobile ions of the bulk of ASIC) was introduced. The criterion for a conservation of FIT in nano-ASIC is P = 1. It was shown that at the equilibrium conditions the contact potentials V at the ASIC//IE coherent heterojunctions in nano-ASICs are V << keT/e. Interface engineering approach "from advanced materials to advanced devices" was proposed as fundamentals for the development of applied nanoionics. The possibility for creation on the base of ASIC//IE coherent heterojunctions of the efficient energy and power devices (sensors and supercapacitors with specific capacity ~10 -~ F/cm 2 and maximal frequencies 10~-109 Hz,) suited for micro(nano)electronics, microsystem technology and 5 Gbit DRAM was pointed out. 1. Introduction introduced and some appropriate fundamentals are for- Dispersoids of ionic conductors [1-3] and ionic con- mulated. Key role of interface design in nanoionics of ductor//electronic conductor heterojunctions [4] are classic ASICs is pointed. It is expected that in next decade the objects of solid state ionics and, at the same time, the nanoionic devices will find a wide application in the objects of nanoionics, as by structure they are nano- sphere of wireless sensor networks (multitude auto- systems. The term and conception of nanoionics as a new nomous sensors that coordinate among themselves and branch of science devoted to a fast ion transport (FIT) in revolutionize information gathering in any type of terrain solid nanosystems was first introduced by [5] in 1992. and conditions). Main applications of nanoionics relate to the creation of new materials, functional structures and devices suited for 2. Two Classes of Solid State Ionic Nano- the storage and conversion energy and information. In the systems and Two Fundamentally Different latest years, the term "nanoionics" ("nano-ionics") came Nanoionics into wide use in scientific articles and denotes also the Solid state ionic conductors (SSIC) with a high level of area of interests of the scientific societies and organiza- unipolar ionic conductivity (Q > 0.001 f2-~cm-~ and the tions [6]. level of electronic conductivity G, is arbitrary) are called In the present article the new scientific direction - superionic conductors (SIC), and solids with oi )> 4, nanoionics of advanced superionic conductors (ASIC) is identified as solid electrolytes (SE). Intersection of SIC f3 Ionics 11 (2005) 3O7 size in nanocomposites. At the sizes of crystallites comparable with a thickness of DEL, the integral values of cri in nanocomposites of "poor" ionic conductors are much higher than in component substances. However, the ion-transport properties (G, E, ni) in the nanocomposites of "poor" ionic conductors are significantly worse (for example, the energy of activation E is 4-8 times large) than in ASICs (c~-AgI, RbAg4Is). Crystal structure of ASICs is close to an optimal one for FIT (oi =, 0.3 ~-lcm-1 at 300 K, E = 0.1 eV). Therefore, the defects of crystal structure should violate almost everywhere in ASIC conditions for FIT. Thus, at the high concentration of defects in nanosystem of "poor" ionic conductors the integral ~ arises, but in ASICs the influence of defects is Fig. 1. Different types of solid state ionic conductors opposite. (SSIC) on the cri- o e diagram [8-10]: SE are the solid In [5], a general approach for description of properties electrolytes where the ionic conductivity ~ >> electronic one o~; SIC are the superionic conductors, ~ > 0.001 f2-Lcm ~, of ionic nanosystem was proposed (nanoionics con- and o~ is arbitrary; ASIC are the advanced superionic ception). It is based on the using of the P = d/L ~ 1 conductors oi > 0.1 ~ fcm-~, and cr is arbitrary; SIC n SE are dimensionless parameter (d is the thickness of boundary the superionic conductors & solid electrolytes, ~ > 0.001 if2-lcm ~, and oi >~q; ASIC fq SE are the advanced superionic domain of SSIC with the peculiar properties, and the L - conductors & solid electrolytes, cr~ > 0.1 if2-lcm ~, and o, ~>% characteristic size of the SSIC nanostructure). For nano- systems of "poor" ionic conductors with DEL it can be d ~- )~D and P = )~o/L. However, if DEL is absent then SE is a group of SIC & SE, simultaneously. Among the others characteristic values should be used instead of 3,D. SICs there is a subgroup with a record high level of Two examples can be mentioned. In a fuel cell the effec- unipolar ~. This subgroup can be called as advanced tive functioning of catalyst demands that the diffusion superionic conductors (ASIC). There is a subgroup ASIC length of proton (d) be comparable with the size of ca- fq SE, i.e. compounds with o, ~ % (examples are: ct- talyst particle (L). Also, at the solid-state synthesis of AgI, ct-RbAg4Is, CsAg4Br3_xIz§ Rb4Cu16IvCl13 and some new compounds in the nano-physical-chemical systems others). For instance, the Rb4Cu16IvC113 is ASIC & SE [6,13-16], dissolution of metals in SSICs is accompanied with recorded high crj (~ 0.34 if2-~crn-~ at 300 K, and by the simultaneous insertion of electrons and ions and activation energy of ionic conductivity E = 0,1 eV) [7]. local electro-neutrality in the layer with peculiar pro- All types of SSICs are presented on the ~,-cr~ diagram perties remains. Therefore, instead of ~.D it is necessary to (Fig. 1). use, for example, a critical radius of a new phase crystal On the boundaries of ionic crystals the double electric nucleus, the average size of crystallite and others similar layers (DEL) with a high concentration of defects always values. exist. It is a consequence of different values of work The calculation of ~-D for the c~-RbAg4I~ ASIC (300 function for different kind of ions [11]. The thickness of K, and concentration of mobile ions ~ 10 28 m -3) according DEL is an order of Debye length )~ and is defined by a to the Debye formula: concentration of mobile ions ne. In the work [1] an en- hanced ionic conductivity cri in nanocomposites (dis- )~o ~ (eeo k8 T/e2 ni) 1/2, (1) persoids) with components of small initial crg was discovered. Such an effect is due to the high density of (e0 = 8.8x 10 -~2 F/m; e is the dielectric constant, 1 for DELs with high values of Oe. vacuum; kB is the Boltzmann's constant, 1.4x10 -23 jK-l; Two classes of SSICs can be distinguished. In the T = 300 K; e is the electronic charge, 1.6x10 -19 C) class of substances with small ~ ("poor" ionic results in value for )~D ~ 0.05 nm, which is less than the conductors), for instance, LiI (at 300 K ere ~ 5.5x10 -7 size of Ag+-ion. It indicates the need for another formula f2-~cm-1, and energy activation E > 0.4 eV [12]), the (see, for example, [17]) for the calculation of the value of ~,o is about ~60 nm that is an order of a grain screening length (/LQ). 308 Ionics 11 (2005) In the RbAg4I5 ASIC, the oscillation frequencies of thickness of transition defect layer was introduced in [34]. mobile Ag+-ions in the potential minimums of crystalline The work [35] was devoted to the development of ad- relief are ~10 J2 s -~ and the Ag+-ions jump over the sorption relaxation model (relaxation of DEL in ASICs). potential barriers (= 0.1 eV) between neighboring In this model, the slow diffusion processes (large values crystallographic positions with the frequencies ~101~ s -~. of energy activation E) on electrode are attributed to the According to [18], in the RbAg4I5 ASIC the concentration movement of ionic defects. However, all above-mentioned of Ag+-ions in the state of flying over potential barriers is models and conceptions are phenomenological and macro- of the order of ~10 26 m -3. For these ions the Debye's scopic and they do not take into account the concrete formula yields ~,o ~ 0.5 nm (the size of ion is several atomic structure of heteroboundaries. Such structures in a times less) and (1) can be using for estimation of number of cases can have a size comparable with ~e in screening length. If the potential of indifferent electrode the volume of ASIC. (IE) at the RbAg4Is/IE heterojunction changes then the Atomic structure of homo- and heterophase boundaries Ag+-ions (flying under potential barriers) will form the and the analysis of appropriate processes are in a focus of DEL with the thickness ~-D ~ 0.5 nm during the time material science during decades. Terms and approaches as interval At ~ 10-j~ s.
Recommended publications
  • Molecular and Polymer Nanodevices (Paper)
    Molecular and Polymer Nanodevices Nikolai Zhitenev National Institute of Standards and Technology Over past years, the research and engineering community has been intensively looking for possibilities to extend of the information processing technologies into post- CMOS era. Recently, Nanotechnology Research Initiative formed by leading semiconductor companies has formulated a set of research vectors (Welser et al., 2008) to guide and to coordinate these efforts. Based on the analysis of the ultimate limitations of the present technology and on the observations of the research and development trends, one of the recommendations is the search of devices operating with the state variables different from an electronic charge. A solid-state switch where the computational state is defined by the spatial locations of heavy particles such as ions, atoms or molecular conformations is one of such possibilities. Possible advantage of heavier information carriers can be easily illustrated (Cavin et al., 2006). Scaling of CMOS devices operating with electronic charge will eventually reach the limit when logic or memory state decays because of electron tunneling under the barriers. For a given barrier height and width that is limited by the material constraints and the device size and by the requirement of the minimal power dissipation, carriers such as ions or atom that are thousands time heavier than electron offer much greater stability to the computational state. Ironically, the use of heavy carriers is absolutely impractical in larger devices because of much lower mobility. However, in a device of a few nanometer size, the ion/atom transport can be fast enough for practical applications. Short molecules and macromolecules can be used as active material for such switching devices.
    [Show full text]
  • A Bipolar Electrochemical Approach to Constructive Lithography: Metal
    ARTICLE pubs.acs.org/Langmuir A Bipolar Electrochemical Approach to Constructive Lithography: Metal/Monolayer Patterns via Consecutive Site-Defined Oxidation and Reduction † † ‡ † † Assaf Zeira, Jonathan Berson, Isai Feldman, Rivka Maoz,*, and Jacob Sagiv*, † ‡ Departments of Materials and Interfaces and Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel bS Supporting Information ABSTRACT: Experimental evidence is presented, demonstrat- ing the feasibility of a surface-patterning strategy that allows stepwise electrochemical generation and subsequent in situ metallization of patterns of carboxylic acid functions on the outer surfaces of highly ordered OTS monolayers assembled on silicon or on a flexible polymeric substrate. The patterning process can be implemented serially with scanning probes, which is shown to allow nanoscale patterning, or in a parallel stamping configuration here demonstrated on micrometric length scales with granular metal film stamps sandwiched between two monolayer-coated substrates. The metal film, consisting of silver deposited by evaporation through a patterned contact mask on the surface of one of the organic monolayers, functions as both a cathode in the printing of the monolayer patterns and an anodic source of metal in their subsequent metallization. An ultrathin water layer adsorbed on the metal grains by capillary condensation from a humid atmosphere plays the double role of electrolyte and a source of oxidizing species in the pattern printing process. It is shown that control over both the direction of pattern printing and metal transfer to one of the two monolayer surfaces can be accomplished by simple switching of the polarity of the applied voltage bias. Thus, the patterned metal film functions as a consumable “floating” stamp capable of two-way (forwardÀbackward) electrochemical transfer of both information and matter between the contacting monolayer surfaces involved in the process.
    [Show full text]
  • Nanoionics-Based Resistive Switching Memories
    REVIEW ARTICLES | INSIGHT Nanoionics-based resistive switching memories Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues. 1,2 3,4 RAINER WASER * AND MASAKAZU AONO ‘M’ stands for a similarly large variety of metal electrodes including 1Institut für Werkstoffe der Elektrotechnik 2, RWTH Aachen University, 52056 electron-conducting non-metals. A first period of high research Aachen, Germany activity up to the mid-1980s has been comprehensively reviewed 2Institut für Festkörperforschung/CNI—Center of Nanoelectronics for elsewhere2–4. The current period started in the late 1990s, triggered Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany by Asamitsu et al.5, Kozicki et al.6 and Beck et al.7. 3Nanomaterials Laboratories, National Institute for Material Science, Before we turn to the basic principles of these switching 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan phenomena, we need to distinguish between two schemes with 4ICORP/Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, respect to the electrical polarity required for resistively switching Saitama 332-0012, Japan MIM systems.
    [Show full text]
  • A Nanoscale Study of Mosfets Reliability and Resistive Switching in RRAM Devices
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Escola d’Enginyeria Electronic Engineering Department A nanoscale study of MOSFETs reliability and Resistive Switching in RRAM devices A dissertation submitted by Qian Wu in fulfillment of the requirements for the Degree of Doctor of Philosophy in Electronic and Telecommunication Engineering Supervised by Dr. Marc Porti i Pujal Bellaterra, November 2016 Universitat Autònoma de Barcelona Escola d’Enginyeria Electronic Engineering Department Dr. Marc Porti i Pujal, associate professor of the Electronic Engineering Department of the Universitat Autònoma de Barcelona, Certifies That the dissertation: A nanoscale study of MOSFETs reliability and Resistive Switching in RRAM devices submitted by Qian Wu to the School of Engineering in fulfillment of the requirements for the Degree of Doctor in the Electronic and Telecommunication Engineering Program, has been performed under his supervision. Dr. Marc Porti Bellaterra, November of 2016 To my family Acknowledgement The four years’ doctoral study is a significant and unforgettable experience for me. Many kind-hearted people give me a great amount of help, professional advice and encouragement.
    [Show full text]
  • Engineering Heteromaterials to Control Lithium Ion Transport Pathways Received: 14 August 2015 Yang Liu1,2, Siarhei Vishniakou3, Jinkyoung Yoo4 & Shadi A
    www.nature.com/scientificreports OPEN Engineering Heteromaterials to Control Lithium Ion Transport Pathways Received: 14 August 2015 Yang Liu1,2, Siarhei Vishniakou3, Jinkyoung Yoo4 & Shadi A. Dayeh3,5 Accepted: 18 November 2015 Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and Published: 21 December 2015 electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. Understanding the transport of lithium (Li) ions and electrons in the electrodes/electrolyte is crucial for achieving superior performance of lithium ion batteries (LIBs) with high energy/power density and good cyclability. These battery characteristics are highly desirable for next generation portable electronics and plug-in electric vehicles1,2. Interfaces inside the batteries, such as within the electrode materials and between electrode and electrolyte, have a critical effect on the Li ion transport3–9. Recently, surface coating on the active materials has been demonstrated to be an efficient method to improve battery performance, which essentially introduce or modify interfaces in the electrodes10–15.
    [Show full text]
  • Optical Memristive Switches
    J Electroceram DOI 10.1007/s10832-017-0072-3 Optical memristive switches Ueli Koch1 & Claudia Hoessbacher1 & Alexandros Emboras1 & Juerg Leuthold1 Received: 18 September 2016 /Accepted: 6 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Optical memristive switches are particularly inter- signals. Normally, the operation speed is moderate and in esting for the use as latching optical switches, as a novel op- the MHz range. The application range includes usage as a tical memory or as a digital optical switch. The optical new kind of memory which can be electrically written and memristive effect has recently enabled a miniaturization of optically read, or usage as a latching switch that only needs optical devices far beyond of what seemed feasible. The to be triggered once and that can keep the state with little or no smallest optical – or plasmonic – switch has now atomic scale energy consumption. In addition, they represent a new logical andinfactisswitchedbymovingsingleatoms.Inthisreview, element that complements the toolbox of optical computing. we summarize the development of optical memristive The optical memristive effect has been discovered only switches on their path from the micro- to the atomic scale. recently [1]. It is of particular interest because of strong Three memristive effects that are important to the optical field electro-optical interaction with distinct transmission states are discussed in more detail. Among them are the phase tran- and because of low power consumption and scalability [8]. sition effect, the valency change effect and the electrochemical Such devices rely in part on exploiting the electrical metallization.
    [Show full text]
  • Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications ∥ ∥ Changwei Li, Tianyi Xiong, Ping Yu,* Junjie Fei,* and Lanqun Mao
    www.acsabm.org Review Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications ∥ ∥ Changwei Li, Tianyi Xiong, Ping Yu,* Junjie Fei,* and Lanqun Mao Cite This: ACS Appl. Bio Mater. 2021, 4, 71−84 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Inspired by the information transmission mechanism in the central nervous systems of life, synapse-mimicking devices have been designed and fabricated for the purpose of breaking the bottleneck of von Neumann architecture and realizing the construction of effective hardware-based artificial intelligence. In this case, synaptic iontronic devices, dealing with current information with ions instead of electrons, have attracted enormous scientific interests owing to their unique characteristics provided by ions, such as the designability of charge carriers and the diversity of chemical regulation. Herein, the basic conception, working mechanism, performance metrics, and advanced applications of synaptic iontronic devices based on three-terminal transistors and two-terminal memristors are systematically reviewed and comprehensively discussed. This Review provides a prospect on how to realize artificial synaptic functions based on the regulation of ions and raises a series of further challenges unsolved in this area. KEYWORDS: iontronics, memristor, transistor, artificial synapse, neuromorphic device 1. INTRODUCTION numerous regulation strategies including charge transport,21 22 ff Inspired by the synapse structure in the nervous system noncovalent interactions, and so on. (3) The di erent carrying almost all intelligent characteristics of life in a tiny structure of ions provided them diversity in valencies, sizes, 1 and polarizabilities, and as a result, ion current carries more volume with low energy consumption, research attention has 23 been paid to the fabrication of synapse-mimicking devices for information when compared with electronic current.
    [Show full text]
  • A Survey of Memristive Threshold Logic Circuits Akshay Kumar Maan, Deepthi Anirudhan Jayadevi, and Alex Pappachen James, Senior Member, IEEE
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 A Survey of Memristive Threshold Logic Circuits Akshay Kumar Maan, Deepthi Anirudhan Jayadevi, and Alex Pappachen James, Senior Member, IEEE Abstract—In this paper, we review the different memristive Threshold logic (TL) itself was first introduced by Warren threshold logic (MTL) circuits that are inspired from the synaptic McCulloch and Walter Pitts in 1943 [17] in the early model action of flow of neurotransmitters in the biological brain. of an artificial neuron based on the basic property of firing Brain-like generalisation ability and area minimisation of these threshold logic circuits aim towards crossing the Moore’s law of the biological neuron. The logic computed the sign of the boundaries at device, circuits and systems levels. Fast switch- weighted sum of its inputs. Modelling a neuron as a threshold ing memory, signal processing, control systems, programmable logic gate (TLG) that fires when input reaches a threshold has logic, image processing, reconfigurable computing, and pattern been the basis of the research on neural networks (NNs) and recognition are identified as some of the potential applications of their hardware implementation in standard CMOS logic [18]. MTL systems. The physical realization of nanoscale devices with However, to continue geometrical scaling of semiconductor memristive behaviour from materials like TiO2, ferroelectrics, silicon, and polymers has accelerated research effort in these components as per Moore’s Law (and beyond), semiconductor application areas inspiring the scientific community to pursue industry needs to investigate a future beyond CMOS, and design of high speed, low cost, low power and high density designs beyond the fetch-decode-execute paradigm of von neuromorphic architectures.
    [Show full text]
  • Resistive Switching in Cu:TCNQ Thin Films
    Resistive Switching in Cu:TCNQ Thin Films Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Elektrotechnik Thorsten Kever aus Erkelenz Berichter: Univ.-Prof. Dr.-Ing. Rainer Waser Juniorprofessor Dr. rer. nat. Dirk Uwe Sauer Tag der mündlichen Prüfung: 30.01.2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Preface This thesis was written during my Ph.D. studies at the Institut für Werkstoffe der Elektrotechnik of the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany. I would like to express my gratitude to Prof. Waser for giving me the opportunity to do research in the exciting field of resistive switching memories and for providing an excellent working and learning environment. I am also indebted to Prof. Sauer who kindly agreed to be the co-examiner in the jury. Many thanks also to: Dr. Böttger for his support and stimulating discussions; Eike Linn and Ann-Christin Dippel for fruitfull discussions, carefull proof-reading and being great office mates; Bart Klopstra, Christian Nauenheim, Carsten Giesen and Torsten Jaspert for their dedicated work during their diploma thesis; Gisela Wasse for taking SEM pictures; Christina Schindler for fruitfull discussions and the preparation of comparison samples. Last but not least, I would like to thank all colleagues and all students at the Institut für Werkstoffe der Elektrotechnik of the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen and at the Research Center Jülich for their valueable support and many memorable moments spent together. v Contents 1 Introduction 1 1.1 Motivation .
    [Show full text]
  • Interface of Extramural Research in Nano Level Complies with Advanced Pharmaceutical Science and Basic Science in the Umbrella of Nanoscience
    wjpmr, 2021,7(4), 393-409. SJIF Impact Factor: 5.922 Sen et al. WORLD JOURNAL OF PHARMACEUTICAL World Journal of Pharmaceutical and Medical ResearchReview Article AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr .com Wjpmr INTERFACE OF EXTRAMURAL RESEARCH IN NANO LEVEL COMPLIES WITH ADVANCED PHARMACEUTICAL SCIENCE AND BASIC SCIENCE IN THE UMBRELLA OF NANOSCIENCE *1Dr. Dhrubo Jyoti Sen, 2Dr. Dhananjoy Saha, 1Arpita Biswas, 1Supradip Mandal, 1Kushal Nandi, 1Arunava Chandra Chandra, 1Amrita Chakraborty and 3Dr. Sampa Dhabal 1Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. 2Deputy Director, Directorate of Technical Education, Bikash Bhavan, Salt Lake City, Kolkata‒700091, West Bengal, India. 3Assistant Director, Forensic Science Laboratory, Govt. of West Bengal, Kolkata, West Bengal, India. *Corresponding Author: Dr. Dhrubo Jyoti Sen Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. Article Received on 02/03/2021 Article Revised on 22/03/2021 Article Accepted on 12/04/2021 ABSTRACT Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.
    [Show full text]
  • Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide
    This is a repository copy of Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/110195/ Version: Accepted Version Article: Balakrishna Pillai, P. orcid.org/0000-0001-7272-9923 and De Souza, M.M. (2016) Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide. ACS Applied Materials and Interfaces . ISSN 1944-8244 https://doi.org/10.1021/acsami.6b13746 This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.6b13746. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Nanomaterials Synthesis and Assembly
    МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) Кафедра иностранных языков НАНОТЕХНОЛОГИЯ И МИКРОСИСТЕМНАЯ ТЕХНИКА Методические указания по английскому языку для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01. 2 Курск 2016 УДК 811.111 (075) Составитель Е.Н. Землянская Рецензент Кандидат социологических наук, доцент Л.В. Левина Нанотехнология и микросистемная техника: методические указания по английскому языку для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01 / Юго-Зап. гос. ун-т; сост. Е.Н. Землянская. - Курск, 2016. - 49 с. Библиогр.: с.49. Способствует формированию навыков перевода, а также усвоению не- обходимого минимума словарного состава текстов по направлению подго- товки, включая общенаучную и терминологическую лексику. Предназначены для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01. Нанотехнология и микросистемная техника. Текст печатается в авторской редакции Подписано в печать 29.06.16. Формат 60х84 1/16. 2 3 Усл.печ. л. 2,6. Уч.-изд.л. 2,3.Тираж 100 экз. Заказ 648. Бесплатно. Юго-Западный государственный университет 305040, г. Курск, ул. 50 лет Октября, 94. Unit I Nanotechnology 1. Try to guess the meaning of the following international words. Look at these words again. Are they nouns (n), verbs (v) or ad- jectives (adj): Nanotechnology, control, atomic, molecular, structure, nanometer, material,
    [Show full text]