CD147 Blockade As a Potential and Novel Treatment of Graft Rejection

Total Page:16

File Type:pdf, Size:1020Kb

CD147 Blockade As a Potential and Novel Treatment of Graft Rejection MOLECULAR MEDICINE REPORTS 16: 4593-4602, 2017 CD147 blockade as a potential and novel treatment of graft rejection JING LUAN1,2*, YU ZHAO1,2*, YANG ZHANG1,2, JINLIN MIAO1,3, JIA LI1,3, ZHI-NAN CHEN1,2 and PING ZHU1,3 1National Translational Science Center for Molecular Medicine, The Fourth Military Medical University; 2Cell Engineering Research Center and Department of Cell Biology, The Fourth Military Medical University; 3Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China Received March 16, 2017; Accepted August 1, 2017 DOI: 10.3892/mmr.2017.7201 Abstract. Cluster of differentiation (CD)147 is highly involved Furthermore, the level of inflammatory cell infiltration in in the T cell activation process. High CD147 expression is transplanted skin was reduced. CD147 blockade decreased observed on the surfaces of activated T cells, particularly the serum levels of interleukin (IL)-17 and the proportions of CD4+ T cells. In organ transplantation, it is important to peripheral blood CD4+ and CD8+ memory T cells. The data prevent graft rejection resulting from the excessive activa- demonstrated that CD147 blockade suppressed skin graft tion of T cells, particularly CD4+ T cells, which exhibit a rejection, primarily by suppressing CD4+T and memory key role in amplifying the immune response. The present T cell proliferation, indicating that CD147 exhibits great study aimed to investigate the effects of CD147 blockade potential as a target of immunosuppressant drugs. in vitro and in vivo and used a transplant rejection system to assess the feasibility of utilizing CD147 antibody-based Introduction immunosuppressant drugs for the treatment of graft rejec- tion. The effects of CD147 antibodies were evaluated on Transplantation remains the best treatment option for lymphocyte proliferation stimulated by phytohemagglutinin correcting certain types of organ failure and tissue damage, or CD3/CD28 magnetic beads and in a one-way mixed e.g., that of the kidneys, heart, and lungs (1). In organ transplan- lymphocyte reaction (MLR) system in vitro. For the in vivo tation, it is always a main goal to prevent rejection. However, analysis, an allogeneic skin transplantation mouse model was the long‑term use of globally nonspecific immunosuppressant used. CD147 antibodies were effective against lymphocytes, drugs to prevent rejection is associated with serious risks, particularly CD4+T lymphocytes, and were additionally including a weakened immune system, infection, and cancer, effective in the one-way MLR system. In the allogeneic skin as well as graft loss due to their toxicity (1,2). Thus, identifying transplantation mouse model, the survival of transplanted safe, target‑specific immunosuppressive agents for promoting skin was extended in the CD147 antibody-treated group. allograft survival is a high priority. Acute rejection is clinically the most common and is mainly mediated by cellular immune responses; this type of rejection can occur any time from a week to months after Correspondence to: Dr Zhi-Nan Chen or Professor Ping Zhu, transplantation. T cells, especially CD4+ T cells from the National Translational Science Center for Molecular Medicine, The recipient, play a key role in acute transplantation rejection. Fourth Military Medical University, 169 Changle West Road, Xi'an, As a trigger, CD4+ T cells amplify the downstream signal. Shaanxi 710032, P.R. China By recognizing HLA‑Ⅱ antigens and interacting with them, E-mail: [email protected] CD4+ T cells cause antigen-presenting cells to release inter- E-mail: [email protected] leukin (IL)-1, which could promote CD4+ T cells releasing IL-2. IL-2 can, in turn, promote CD4+ T cell proliferation * Contributed equally and provide an auxiliary signal for CTL cell differentiation. Furthermore, CD4+ T cells produce IL-4 and IL-5 to promote Abbreviations: CCK-8, Cell Counting kit 8; FITC, fluorescein B cell differentiation and the secretion of antibodies against isothiocyanate; FK506, tacrolimus; IFN-γ, interferon γ; IL-17, the graft to participate in the rejection reaction. Different interleukin 17; IL-4, interleukin 4; mAb, monoclonal antibody; MHC, major histocompatibility complex; MLR, mixed lymphocyte CD4+ T cell subsets execute different functions during reaction; MS, multiple sclerosis; PBMCs, peripheral blood transplant rejection. There have been studies supporting mononuclear cells; PE, phycoerythrin; PI, propidium iodide; RA, the notion that the balance of the Th1/Th2 cell proportion rheumatoid arthritis is a determining factor in this process. Th1 cells mainly participate in graft rejection, especially in acute rejection; Key words: CD147 antibody, immunosuppressant, graft rejection, in contrast, Th2 cell activation leads to the formation of treatment transplantation tolerance (3,4). Furthermore, cytokines such as Th1-related interferon (IFN)-γ and Th2-related IL-2, IL-4 4594 LUAN et al: CD147 BLOCKADE SHOWS GREAT POTENTIAL FOR THE TREATMENT OF GRAFT REJECTION and IL-10 participate in the development of rejection (5). As not meet the criteria for FDA approval; however, it did research continues, CD4+ T cell subsets, e.g., Th17 and Treg, show activity against CD147, which suggests that CD147 is are considered to be the two main types involved in allograft an effective target for the treatment of GVHD (25-27). The rejection and survival (6,7). effect of CD147 blockade on allograft rejection has never In addition to the above-mentioned mechanisms of CD4+ been investigated before. Thus, this study was performed to T cell subsets, memory T cells (both CD4+ and CD8+) have investigate whether the blockade of CD147 can inhibit the been found to be involved in development of the rejection rejection reaction and to determine whether CD147 antibodies reaction (8-10). In a primate model, the elimination of could be developed as specific immunosuppressors for the memory T cells has been shown to induce the body's immune graft rejection response. tolera nce (11). It has also been reported that infusion of sensitized memory CD4+ T cells produces acute rejection Materials and methods in mice that have undergone abdominal heterotopic heart transplantation. In addition, infusion of sensitized memory Antibodies and reagents. Humanized mAbs (5A12) against CD4+ T cells has been shown to significantly shorten the CD147 were generated and identified in our laboratory. survival times of transplanted hearts, and this effect cannot A purified human IgG1 isotype control antibody (Clone: be reversed by commonly used immunosuppressants (12,13). ET901) was purchased from BioLegend, Inc. (San Diego, Clinical studies have shown that the prognoses of patients CA, USA). An anti‑mouse CD147 functional‑grade purified who have undergone liver transplantation are dependent on antibody (Clone: RL73) and its isotype control (Clone: eBR2a) patient CD8+ T memory cell status (14). The results of an were purchased from eBioscience (San Diego, CA, USA). in vivo study have shown that endogenous donor-reactive Tacrolimus (FK506) was purchased from KeHao (Wuhan, CD8+ memory T cells infiltrate the transplanted hearts Hubei, China). Fluorescein isothiocyanate (FITC)-conjugated of mice within a few h after reperfusion and secrete mouse anti-human CD4 and phycoerythrin (PE)-conjugated IFN-γ, causing inflammation (15). It is well known that mouse anti-human CD3 antibodies, Foxp3 staining buffer antibody-mediated T cell depletion is one of the most potent and a cell activation cocktail used for intracellular staining immunosuppressant therapies. This therapy is increasingly were purchased from BioLegend. PE-Cy7-conjugated rat used as an induction therapy in organ transplantation (16). anti-mouse IFN-γ, PE-conjugated rat anti-mouse IL-4, However, T cell homeostasis after depletion therapy leads to Alexa 647-conjugated rat anti-mouse IL-17, FITC-conjugated a predominance of memory T cells, which are more potent rat anti-mouse CD4, allophycocynanin-H7-conjugated rat than naïve T cells in mediating graft rejection and present a anti-mouse CD8, PE-Cy7-conjugated rat anti-mouse CD44, major obstacle to achieving tolerance (17,18). BUV737-conjugated rat anti-mouse CD62 L, allophyco- CD147 is a cell-surface glycosylated transmembrane cyanin-conjugated rat anti-mouse CD25, and PE-conjugated protein that belongs to the immunoglobulin superfamily. This rat anti-mouse Foxp3 antibodies were purchased from BD protein serves multiple biological functions and is widely Biosciences (San Diego, CA, USA). expressed in many tissues and cell types, such as normal brain tissue, tracheal, lung, and breast tissues, as well as Cell isolation. Human peripheral blood was obtained from lymphocytes and neutrophils (19,20). High CD147 expression healthy volunteers who provided informed consent. In brief, is involved in many different diseases. In the immune system, lymphocytes were isolated by density gradient centrifugation CD147 participates in different stages of T cell activity, over Lymphocyte Separation Medium (MP Biomedicals, including development, activation, proliferation, migration, LLC, Santa Ana, CA, USA) according to the manufacturer's and adhesion (19,21,22). It is worth mentioning that CD147 instructions. CD4+ T cells were isolated by negative selec- has been identified as a T cell activation‑related antigen (M6) tion using a magnetic cell separation system according to expressed in phytohemagglutinin (PHA)-activated T lympho- the manufacturer's instructions (Miltenyi
Recommended publications
  • Recommended INN: List 46
    WHO Drug Information, Vol 15, No 3-4, 2001 Recommended INN: List 46 International Nonproprietary Names for Pharmaceutical Substances (INN) RECOMMENDED International Nonproprietary Names (Rec INN): List 46 Notice is hereby given that, in accordance with paragraph 7 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances [Off Rec Wld Health Org, 1955, 60, 3 (Resolution EB15&R7); 1969, 173, 10 (Resolution EB43&R9)], the following names are selected as Recommended International Nonproprietary Names& The inclusion of a name in the lists of Recommended International Nonproprietary Names does not imply any recommendation of the use of the substance in medicine or pharmacy& Lists of Proposed (173) and Recommended (135) International Nonproprietary Names can be found in Cumulative List No 9, 1996 Dénominations communes internationales des Substances pharmaceutiques (DCI) Dénominations communes internationales RECOMMANDÉES (DCI Rec): Liste 46 Il est notifié que, conformément aux dispositions du paragraphe 7 de la Procédure à suivre en vue du choix de Dénominations communes internationales recommandées pour les Substances pharmaceutiques [Actes off Org mond Santé, 1955, 60, 3 (résolution EB15&R7); 1969, 173, 10 (résolution EB43&R9)] les dénominations ci-dessous sont choisises par lOrganisation mondiale de la Santé en tant que dénominations communes internationales recommandées& Linclusion dune dénomination dans les listes de DCI recommandées nimplique aucune recommandation en vue de lutilisation
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • Inolimomab (Rinn) Rotic Syndrome
    Gavilimomab/Muromonab-CD3 1835 Adverse effects reported with gusperimus include bone-marrow 50 mg three times daily has been recommended for patients with is, have been reported and may be difficult to distin- depression, numbness of face and extremities, headache, gas- nephrotic syndrome associated with primary glomerular disease guish from the cytokine release syndrome. trointestinal disturbances, alterations in liver enzyme values, and or lupus nephritis, and in rheumatoid arthritis, but high-dose reg- facial flushing. Rapid injection should be avoided as an acute in- imens have been investigated. As with other potent immunosuppressants, treatment crease in plasma concentration may produce respiratory depres- Further references. with muromonab-CD3 may increase the risk of serious sion. 1. Tanabe K, et al. Long-term results in mizoribine-treated renal infections and the development of certain malignan- ◊ References. transplant recipients: a prospective, randomized trial of mizori- cies. Intra-uterine devices should be used with caution bine and azathioprine under cyclosporine-based immunosup- 1. Ramos EL, et al. Deoxyspergualin: mechanism of action and pression. Transplant Proc 1999; 31: 2877–9. during immunosuppressive therapy as there is an in- pharmacokinetics. Transplant Proc 1996; 28: 873–5. 2. Yoshioka K, et al. A multicenter trial of mizoribine compared creased risk of infection. Use of live vaccines should be 2. Tanabe K, et al. Effect of deoxyspergualin on the long-term out- with placebo in children with frequently relapsing nephrotic come of renal transplantation. Transplant Proc 2000; 32: syndrome. Kidney Int 2000; 58: 317–24. avoided for the same reason. 1745–6. 3. Yokota S. Mizoribine: mode of action and effects in clinical use.
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Method and Use for Increasing Efficacy of Anti-Adhesive Compositions in Controlling Inflammation and Pain
    (19) & (11) EP 2 465 513 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 20.06.2012 Bulletin 2012/25 A61K 31/77 (2006.01) A61K 33/06 (2006.01) A61K 45/06 (2006.01) A61P 29/00 (2006.01) (21) Application number: 11195175.2 (22) Date of filing: 12.11.2007 (84) Designated Contracting States: (72) Inventor: Chamness, Kathy L. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Memphis, TN 38104-5305 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: O’Connell, Maura et al FRKelly (30) Priority: 13.11.2006 US 598397 27 Clyde Road Ballsbridge (62) Document number(s) of the earlier application(s) in Dublin 4 (IE) accordance with Art. 76 EPC: 07864257.6 / 2 104 505 Remarks: •This application was filed on 22-12-2011 as a (71) Applicant: Warsaw Orthopedic, Inc. divisional application to the application mentioned Warsaw, IN 46581 (US) under INID code 62. •Claims filed after the date of filing of the application (Rule 68(4) EPC). (54) Method and use for increasing efficacy of anti-adhesive compositions in controlling inflammation and pain (57) The invention discloses a method and kit thereof prising an effective amount of at least one pharmaceuti- for increasing the efficiency of anti-adhesive composi- cally-acceptable anti-adhesive non-ionic polymer to a tions by parenterally administering a composition com- site of injury, controlling inflammation at the site of injury, and reducing pain. EP 2 465 513 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 465 513 A2 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to methods of increasing efficacy of anti-adhesive compositions by parental administration of compositions containing anti-adhesive polymers and magnesium salts.
    [Show full text]
  • IUPAC Glossary of Terms Used in Immunotoxicology (IUPAC Recommendations 2012)*
    Pure Appl. Chem., Vol. 84, No. 5, pp. 1113–1295, 2012. http://dx.doi.org/10.1351/PAC-REC-11-06-03 © 2012 IUPAC, Publication date (Web): 16 February 2012 IUPAC glossary of terms used in immunotoxicology (IUPAC Recommendations 2012)* Douglas M. Templeton1,‡, Michael Schwenk2, Reinhild Klein3, and John H. Duffus4 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; 2In den Kreuzäckern 16, Tübingen, Germany; 3Immunopathological Laboratory, Department of Internal Medicine II, Otfried-Müller-Strasse, Tübingen, Germany; 4The Edinburgh Centre for Toxicology, Edinburgh, Scotland, UK Abstract: The primary objective of this “Glossary of Terms Used in Immunotoxicology” is to give clear definitions for those who contribute to studies relevant to immunotoxicology but are not themselves immunologists. This applies especially to chemists who need to under- stand the literature of immunology without recourse to a multiplicity of other glossaries or dictionaries. The glossary includes terms related to basic and clinical immunology insofar as they are necessary for a self-contained document, and particularly terms related to diagnos- ing, measuring, and understanding effects of substances on the immune system. The glossary consists of about 1200 terms as primary alphabetical entries, and Annexes of common abbre- viations, examples of chemicals with known effects on the immune system, autoantibodies in autoimmune disease, and therapeutic agents used in autoimmune disease and cancer. The authors hope that among the groups who will find this glossary helpful, in addition to chemists, are toxicologists, pharmacologists, medical practitioners, risk assessors, and regu- latory authorities. In particular, it should facilitate the worldwide use of chemistry in relation to occupational and environmental risk assessment.
    [Show full text]
  • International Nonproprietary Names (Inn) for Biological and Biotechnological Substances
    INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 15/06/2006 INTERNATIONAL NONPROPRIETARY NAMES (INN) FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES (A REVIEW) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines (QSM) Medicines Policy and Standards (PSM) Department CONTENTS 0. INTRODUCTION…………………………………….........................................................................................v 1. PHARMACOLOGICAL CLASSIFICATION OF BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………................................1 2. CURRENT STATUS OF EXISTING STEMS OR SYSTEMS FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES…………………….3 2.1 Groups with respective stems ……………………………………………………………………3 2.2 Groups with respective pre-stems………………………………………………………………4 2.3 Groups with INN schemes………………………………………………………………………….4 2.4 Groups without respective stems / pre-stems and without INN schemes…..4 3. GENERAL POLICIES FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………………………………………………………………………...5 3.1 General policies for blood products……………………………………………………………5 3.2 General policies for fusion proteins……………………………………………………………5 3.3 General policies for gene therapy products………………………………………………..5 3.4 General policies for glycosylated and non-glycosylated compounds………...6 3.5 General policies for immunoglobulins……………………………………………………….7 3.6 General polices for monoclonal antibodies………………………………………………..7 3.7 General polices for skin substitutes……………………………………………………………9 3.8 General policies for transgenic products……………………………………………………9
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]