The Scientific Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Science Standards
SCIENCE It is the policy of the Oklahoma State Department of Education (OSDE) not to discriminate on the basis of race, color, religion, gender, national origin, age, or disability in its programs or employment practices as required by Title VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Civil rights compliance inquiries related to the OSDE may be directed to the Affirmative Action Officer, Room 111, 2500 North Lincoln Boulevard, Oklahoma City, Oklahoma 73105-4599, telephone number (405) 522-4930; or, the United States Department of Education’s Assistant Secretary for Civil Rights. Inquires or concerns regarding compliance with Title IX by local school districts should be presented to the local school district Title IX coordinator. This publication, printed by the State Department of Education Printing Services, is issued by the Oklahoma State Department of Education as authorized by 70 O.S. § 3-104. Five hundred copies have been prepared using Title I, Part A, School Improvement funds at a cost of $.15 per copy. Copies have been deposited with the Publications Clearinghouse of the Oklahoma Department of Libraries. DECEMBER 2013. SCIENCE Table of Contents 5-8 Introduction 9 K-5 Overview 10-18 ■ KINDERGARTEN 19-28 ■ 1ST GRADE 29-39 ■ 2ND GRADE 40-54 ■ 3RD GRADE 55-68 ■ 4TH GRADE 69-82 ■ 5TH GRADE 83 6-12 Overview 84-101 ■ 6TH GRADE 102-119 ■ 7TH GRADE 120-137 ■ 8TH GRADE 138-152 ■ PHYSICAL SCIENCE 153-165 ■ CHEMISTRY 166-181 ■ PHYSICS 182-203 ■ BIOLOGY I 204-219 ■ EARTH & SPACE SCIENCE 220-235 ■ ENVIRONMENTAL SCIENCE Introduction Science uses observation and experimentation to explain natural phenomena. -
A Philosophical and Historical Analysis of Cosmology from Copernicus to Newton
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton Manuel-Albert Castillo University of Central Florida Part of the History of Science, Technology, and Medicine Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castillo, Manuel-Albert, "Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton" (2017). Electronic Theses and Dissertations, 2004-2019. 5694. https://stars.library.ucf.edu/etd/5694 SCIENTIFIC TRANSFORMATIONS: A PHILOSOPHICAL AND HISTORICAL ANALYSIS OF COSMOLOGY FROM COPERNICUS TO NEWTON by MANUEL-ALBERT F. CASTILLO A.A., Valencia College, 2013 B.A., University of Central Florida, 2015 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the department of Interdisciplinary Studies in the College of Graduate Studies at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Donald E. Jones ©2017 Manuel-Albert F. Castillo ii ABSTRACT The purpose of this thesis is to show a transformation around the scientific revolution from the sixteenth to seventeenth centuries against a Whig approach in which it still lingers in the history of science. I find the transformations of modern science through the cosmological models of Nicholas Copernicus, Johannes Kepler, Galileo Galilei and Isaac Newton. -
A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M. -
Atomic History Project Background: If You Were Asked to Draw the Structure of an Atom, What Would You Draw?
Atomic History Project Background: If you were asked to draw the structure of an atom, what would you draw? Throughout history, scientists have accepted five major different atomic models. Our perception of the atom has changed from the early Greek model because of clues or evidence that have been gathered through scientific experiments. As more evidence was gathered, old models were discarded or improved upon. Your task is to trace the atomic theory through history. Task: 1. You will create a timeline of the history of the atomic model that includes all of the following components: A. Names of 15 of the 21 scientists listed below B. The year of each scientist’s discovery that relates to the structure of the atom C. 1- 2 sentences describing the importance of the discovery that relates to the structure of the atom Scientists for the timeline: *required to be included • Empedocles • John Dalton* • Ernest Schrodinger • Democritus* • J.J. Thomson* • Marie & Pierre Curie • Aristotle • Robert Millikan • James Chadwick* • Evangelista Torricelli • Ernest • Henri Becquerel • Daniel Bernoulli Rutherford* • Albert Einstein • Joseph Priestly • Niels Bohr* • Max Planck • Antoine Lavoisier* • Louis • Michael Faraday • Joseph Louis Proust DeBroglie* Checklist for the timeline: • Timeline is in chronological order (earliest date to most recent date) • Equal space is devoted to each year (as on a number line) • The eight (8) *starred scientists are included with correct dates of their discoveries • An additional seven (7) scientists of your choice (from -
Physics of Gases and Phenomena of Heat Evangelista Torricelli (1608-1647)
Physics of gases and phenomena of heat Evangelista Torricelli (1608-1647) ”...We have made many vessels of glass like those shown as A and B and with tubes two cubits long. These were filled with quicksilver, the open end was closed with the finger, and they were then inverted in a vessel where there was quicksilver C; then we saw that an empty space was formed and that nothing happened in the vessel when this space was formed; the tube between A and D remained always full to the height of a cubit and a quarter and an inch high... Water also in a similar tube, though a much longer one, will rise to about 18 cubits, that is, as much more than quicksilver does as quicksilver is heavier than water, so as to be in equilibrium with the same cause which acts on the one and the other...” Letter to Michelangelo Ricci, June 11, 1644 Evangelista Torricelli (1608-1647) ”We live immersed at the bottom of a sea of elemental air, which by experiment undoubtedly has weight, and so much weight that the densest air in the neighbourhood of the surface of the earth weighs about one four-hundredth part of the weight of water...” Letter to Michelangelo Ricci, June 11, 1644 In July 1647 Valeriano Magni performed experiments on the vacuum in the presence of the King of Poland at the Royal Castle in Warsaw Blaise Pascal (1623-1662) ”I am searching for information which could help decide whether the action attributed to horror vacui really results from it or perhaps is caused by gravity and the pressure of air. -
Mothers in Science
The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond. -
Galileo's Assayer
University of Nevada, Reno Galileo's Assayer: Sense and Reason in the Epistemic Balance A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in History. by James A Smith Dr. Bruce Moran/Thesis Advisor May 2018 c by James A Smith 2018 All Rights Reserved THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by JAMES A. SMITH entitled Galileo's Assayer: Sense and Reason in the Epistemic Balance be accepted in partial fulfillment of the requirements for the degree of MASTER OF ARTS Bruce Moran, Ph.D., Advisor Edward Schoolman, Ph.D., Committee Member Carlos Mariscal, Ph.D., Committee Member Stanislav Jabuka, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i Abstract Galileo's The Assayer, published in 1623, represents a turning point in Galileo's philo- sophical work. A highly polemical \scientific manifesto," The Assayer was written after his astronomical discoveries of the moons of Jupiter and sunspots on a rotating sun, but before his mature Copernican work on the chief world systems (Ptolemaic versus Copernican). The Assayer included major claims regarding the place of math- ematics in natural philosophy and how the objects of the world and their properties can be known. It's in The Assayer that Galileo wades into the discussion about the ultimate constituents of matter and light, namely, unobservable particles and atoms. Galileo stressed the equal roles that the senses and reason served in the discovery of knowledge, in contradistinction to Aristotelian authoritarian dogma that he found to hinder the processes of discovery and knowledge acquisition. -
On the Infinite in Leibniz's Philosophy
On the Infinite in Leibniz's Philosophy Elad Lison Interdisciplinary Studies Unit Science, Technology and Society Ph.D. Thesis Submitted to the Senate of Bar-Ilan University Ramat-Gan, Israel August 2010 This work was carried out under the supervision of Dr. Ohad Nachtomy (Department of Philosophy), Bar-Ilan University. Contents א.……………………………….…………………………………………Hebrew Abstract Prologue…………………………………………………………...………………………1 Part A: Historic Survey Methodological Introduction…………………………………………………………..15 1. Aristotle: Potential Infinite………………………………………………………….16 2. Thomas Aquinas: God and the Infinite………………………………………..…….27 3. William of Ockham: Syncategorematic and Actual Infinite……………………..….32 4. Rabbi Abraham Cohen Herrera: Between Absolute Unity and Unbounded Multitude………………………………………………………………………..….42 5. Galileo Galilei: Continuum Constructed from Infinite Zero's………………………49 6. René Descartes: Infinite as Indefinite…………………………………………….…58 7. Pierre Gassendi: Rejection of the Infinite…………………………………………...69 8. Baruch Spinoza: Infinite Unity…………………………………………………...…73 9. General Background: Leibniz and the History of the Infinite……………………....81 Summary…………………………………………………………………………….…94 Part B: Mathematics Introduction…………………………………………………………………………….99 1. 'De Arte Combinatoria' as a Formal Basis for Thought: Retrospective on Leibniz's 1666 Dissertation………………………………………………………………....102 2. Leibniz and the Infinitesimal Calculus……………………………………….……111 2.1. Mathematical Background: Mathematical Works in 16th-17th Centuries…..111 2.2. Leibniz's Mathematical Development…………………………………….…127 -
How Science Works
PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community. -
Named Units of Measurement
Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Units.pdf 1 NAMED UNITS OF MEASUREMENT © Dr. John Andraos, 2000 - 2013 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ Atomic mass unit (u, Da) John Dalton 6 September 1766 - 27 July 1844 British, b. Eaglesfield, near Cockermouth, Cumberland, England Dalton (1/12th mass of C12 atom) Dalton's atomic theory Dalton, J., A New System of Chemical Philosophy , R. Bickerstaff: London, 1808 - 1827. Biographical References: Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D ., Biographical Encyclopedia of Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Units.pdf 2 Scientists , Institute of Physics Publishing: Bristol, UK, 1994 Farber, Eduard (ed.), Great Chemists , Interscience Publishers: New York, 1961 Maurer, James F. (ed.) Concise Dictionary of Scientific Biography , Charles Scribner's Sons: New York, 1981 Abbott, David (ed.), The Biographical Dictionary of Scientists: Chemists , Peter Bedrick Books: New York, 1983 Partington, J.R., A History of Chemistry , Vol. III, Macmillan and Co., Ltd.: London, 1962, p. 755 Greenaway, F. Endeavour 1966 , 25 , 73 Proc. Roy. Soc. London 1844 , 60 , 528-530 Thackray, A. in Gillispie, Charles Coulston (ed.), Dictionary of Scientific Biography , Charles Scribner & Sons: New York, 1973, Vol. 3, 573 Clarification on symbols used: personal communication on April 26, 2013 from Prof. O. David Sparkman, Pacific Mass Spectrometry Facility, University of the Pacific, Stockton, CA. Capacitance (Farads, F) Michael Faraday 22 September 1791 - 25 August 1867 British, b. -
The Copernican Revolution, the Scientific Revolution, and The
The Copernican Revolution, the Scientific Revolution, and the Mechanical Philosophy Conor Mayo-Wilson University of Washington Phil. 401 January 19th, 2017 2 Prediction and Explanation, in particular, the role of mathematics, causation, primary and secondary qualities, microsctructure in prediction and explanation, and 3 Empirical Theories, in particular, the place of the earth in the solar system, the composition of matter, and the causes of terrestial and celestial motion. We're on our way to meeting goal three, but we've got two more to go ::: Course Goals By the end of the quarter, students should be able to explain in what ways the mechanical philosophers agreed and disagreed with Aristotle and scholastics about 1 Epistemology, in particular, the role of testimony, authority, experiment, and logic as sources of knowledge, 3 Empirical Theories, in particular, the place of the earth in the solar system, the composition of matter, and the causes of terrestial and celestial motion. We're on our way to meeting goal three, but we've got two more to go ::: Course Goals By the end of the quarter, students should be able to explain in what ways the mechanical philosophers agreed and disagreed with Aristotle and scholastics about 1 Epistemology, in particular, the role of testimony, authority, experiment, and logic as sources of knowledge, 2 Prediction and Explanation, in particular, the role of mathematics, causation, primary and secondary qualities, microsctructure in prediction and explanation, and Course Goals By the end of the quarter, -
A New Vision of the Senses in the Work of Galileo Galilei
Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.