Mechanical Role of the Spine, Ribcage and Interabdominal Pressure in The
Total Page:16
File Type:pdf, Size:1020Kb
DEVELOPMENT OF A NON-FUSION SCOLIOSIS CORRECTION DEVICE NUMERICAL MODELLING OF SCOLIOSIS CORRECTION This project, “A non-fusion scoliosis correction device”, was supported by a grant from the Dutch Technology Foundation (STW), applied science division of NWO and the Technology Program of the ministry of economic affairs (project number 07618). The printing of this thesis was financially supported by: Stichting Technologische Wetenschappen (STW) Samenstelling promotiecommissie: Voorzittert en secretaris: Prof. dr. F. Eising Universiteit Twente Promotoren: Prof. dr. ir. G.J. Verkerke Universiteit Twente Prof. dr. A.G. Veldhuizen Universitair Medisch Centrum Groningen Assistent promotor: Dr. ir. J.J. Homminga Universiteit Twente Leden: Prof. dr. ir. N.J.J. Verdonschot Universiteit Twente Prof. dr. ir. A. De Boer Universiteit Twente Prof. dr. K. Ito Technische Universiteit Eindhoven Prof. dr. J.H. van Dieën Vrije Universiteit Amsterdam Prof. dr. ir. N.M. Maurits Universitair Medisch Centrum Groningen Paranimfen: Tjitske Boonstra Evelien Platvoet Printed by: Ipskamp Drukkers BV, Enschede ISBN: 978-90-365-3229-7 Copyright © 2011 by G.J.M. Meijer, Enschede, The Netherlands. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage or retrieval system, without permission in writing from the author. DEVELOPMENT OF A NON-FUSION SCOLIOSIS CORRECTION DEVICE NUMERICAL MODELLING OF SCOLIOSIS CORRECTION PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. H. Brinksma, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 14 oktober 2011 om 12.45 uur door Gerarda Johanna Maria Meijer geboren op 6 december 1978 te Oldenzaal Dit proefschrift is goedgekeurd door: Prof. dr. ir. G.J. Verkerke (promotor) Prof. dr. A.G. Veldhuizen (promotor) Dr. ir. J.J. Homminga (assistent promotor) ISBN: 978-90-365-3229-7 Copyright © 2011 by G.J.M. Meijer, Enschede, The Netherlands Table of Contents 1 General introduction......................................................................... 10 1.1 Anatomy of the spine ..................................................................... 11 1.2 Adolescent Idiopathic Scoliosis ...................................................... 13 1.3 Mechanical behaviour of the spine ................................................. 16 1.4 The use of numerical models in optimizing scoliosis correction ...... 17 1.5 Aim and outline of this thesis ......................................................... 19 2 Models of the spine and trunk and their validation processes....... 24 2.1 Structure of the model ................................................................... 25 2.2 Methods ........................................................................................ 38 2.3 Validity of the models .................................................................... 40 2.4 Discussion ..................................................................................... 48 2.5 Conclusion on usability and validity of the model............................ 51 3 The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment . 58 3.1 Introduction ................................................................................... 60 3.2 Methods ........................................................................................ 60 3.3 Results .......................................................................................... 65 3.4 Discussion ..................................................................................... 68 3.5 Conclusion .................................................................................... 71 4 Influence of interpersonal geometrical variation on spinal motion segment stiffness - implications for patient-specific modelling ........... 76 4.1 Introduction ................................................................................... 78 4.2 Materials and methods .................................................................. 79 4.3 Results .......................................................................................... 81 4.4 Discussion ..................................................................................... 85 5 Influence of costovertebral joints on the stiffness of the spine ..... 92 5.1 Introduction ................................................................................... 94 5.2 Materials and Methods .................................................................. 95 5.3 Results .......................................................................................... 98 5.4 Discussion ................................................................................... 102 6 Mechanical role of the spine, ribcage and intra-abdominal pressure in the behaviour of the trunk ................................................................ 108 6.1 Introduction ................................................................................. 110 6.2 Methods ...................................................................................... 110 6.3 Results ........................................................................................ 112 6.4 Discussion and conclusion........................................................... 116 7 Is scoliosis induction a good model for scoliosis correction? .... 120 7.1 Introduction ................................................................................. 122 7.2 Methods ...................................................................................... 123 7.3 Results ........................................................................................ 125 7.4 Discussion and conclusion........................................................... 127 8 General discussion ......................................................................... 132 8.1 Discussion of the model ............................................................... 133 8.2 Discussion of the results .............................................................. 136 8.3 Concluding remarks ..................................................................... 140 Appendices ........................................................................................... 142 A Quantitative data per vertebral level ............................................. 143 B Definition of planes and local coordinate system .......................... 146 C Shape of the endplates ................................................................ 148 Summary ............................................................................................... 151 Samenvatting ........................................................................................ 155 Dankwoord…………………………………………………………………...…160 About the author……………………………………………………………….164 Publications…………………………………………………………………….165 Chapter 1 1 General introduction General introduction Scoliosis is a three-dimensional deformity of the spine and occurs most in adolescent girls. Without treatment scoliosis progression can lead to a life-threatening situation, since the heart and lungs become oppressed. So correcting the spine is necessary. This PhD-thesis is part of a multi-disciplinary project aimed at the development of an implantable, non-fusion scoliosis correction device. The project consists of three PhD projects: 1) the design and prototyping of the new scoliosis-correction implant (Martijn Wessels), 2) in vitro tests on human and porcine spines to determine biomechanical spine properties and animal experiments to test the prototype (Iris Busscher) 3) development of a numerical model of the mechanical behaviour of the spine and trunk to optimize the design of the implant (this thesis). In this first chapter the What, Why and How of the research in this thesis are outlined. Background information about the anatomy of the healthy spine (1.1), general information about scoliosis (1.2) and the biomechanics of the spine (1.3) is given. In section 1.4 the use of biomechanical models in optimizing scoliosis correction is discussed and the need for a new model is motivated. In the last section the aim and outline of the thesis is explained. 1.1 Anatomy of the spine The human spine is a complex structure with typically shaped bony segments (the vertebrae), separated by flexible segments (intervertebral discs). Although the vertebrae gradually change shape along the spine, a division into five regions is Figure 1: Anatomy of the spine. 1 11 Chapter 1 General introduction typically made, with a numbering of the vertebrae per region: cervical (C1-C7), thoracic (T1-T12), lumbar (L1-L5), sacral (S1-S5) and coccyx (figure 1). In the sagittal plane, the spine is curved; convex anteriorly (lordosis) in the cervical and lumbar region and convex posteriorly (kyphosis) in the thoracic and sacral region (figure 1, right). In the coronal plane the normal spine appears straight and symmetrical (figure 1, middle and left). All vertebrae consist of the same elements, although elements can be more or less pronounced in certain regions, mainly because of differences in mobility and variation in attachments of muscles and/or ribs. A typical vertebra (figure 2) consists of a body (corpus) in the front and a hollow ring with several processes (vertebral arch) in the back. This vertebral arch encloses the