Inhibition of the Oxygen Sensor PHD2 in the Liver Improves Survival in Lactic Acidosis by Activating the Cori Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of the Oxygen Sensor PHD2 in the Liver Improves Survival in Lactic Acidosis by Activating the Cori Cycle Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle Tomohiro Suharaa,b,1, Takako Hishikia,c,d,e,1, Masataka Kasaharaa,f,1, Noriyo Hayakawaa,c,d, Tomoko Oyaizua,b, Tsuyoshi Nakanishia,g, Akiko Kuboa,d, Hiroshi Morisakib, William G. Kaelin Jr.h,i,2, Makoto Suematsua,d,2, and Yoji Andrew Minamishimaa,d,2 aDepartment of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; bDepartment of Anesthesiology, Keio University School of Medicine, Tokyo 160-8582, Japan; cTranslational Research Center, Keio University School of Medicine, Tokyo 160-8582, Japan; dJapan Science and Technology Agency, Exploratory Research for Advanced Technology, Suematsu Gas Biology Project, Core Research for Evolutional Science and Technology, Tokyo 160-8582, Japan; eJapan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 160-8582, Japan; fDepartment of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan; gMS Business Unit, Shimadzu Corporation, Kyoto 604-8511, Japan; hDepartment of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215; and iHoward Hughes Medical Institute, Chevy Chase, MD 20815 Contributed by William G. Kaelin, Jr., August 12, 2015 (sent for review June 22, 2015; reviewed by Ralph J. DeBerardinis) Loss of prolyl hydroxylase 2 (PHD2) activates the hypoxia-inducible Results and Discussion factor-dependent hypoxic response, including anaerobic glycolysis, Inactivation of Phd2 in the Liver Reduces the Blood Lactate Level. which causes large amounts of lactate to be released from cells into PHD2 is the dominant HIF-prolyl hydroxylase in vivo among all the circulation. We found that Phd2-null mouse embryonic fibroblasts three PHDs (4), and inactivating PHD2 alone is sufficient to ac- (MEFs) produced more lactate than wild-type MEFs, as expected, tivate HIF (5), which would enhance lactate efflux from the cells. − − whereas systemic inactivation of PHD2 in mice did not cause hyper- As expected, lactate efflux from Phd2 / mouse embryonic fibro- + + lacticacidemia. This unexpected observation led us to hypothesize blasts (MEFs) was significantly higher than from Phd2 / MEFs that the hypoxic response activated in the liver enhances the Cori (Fig. 1A). We therefore expected that systemic inactivation of – MEDICAL SCIENCES cycle, a lactate glucose carbon recycling system between muscle PHD2 would cause increased lactic acid production and hyper- and liver, and thereby decreases circulating lactate. Consistent with lacticacidemia. To test this, we studied mice in which Phd2 can be this hypothesis, blood lactate levels measured after a treadmill or conditionally inactivated systemically (Phd2-SKO) (5). We first Phd2 lactate tolerance test were significantly lower in -liver-specific confirmed that the expression levels of some mRNAs linked to Phd2-LKO 13 knockout ( )micethanincontrolmice.Aninvivo C-labeled glycolysis were significantly increased in skeletal muscles of Phd2- lactate incorporation assay revealed that the livers of Phd2-LKO mice 13 SKO mice compared to control mice (Fig. S1A and Table S1). produce significantly more glucose derived from C-labeled lactate Unexpectedly, however, blood lactate levels in Phd2-SKO were than control mice, suggesting that blockade of PHD2 in the liver ame- not higher, and in fact tended to be lower, than in the control liorates lactic acidosis by activating gluconeogenesis from lactate. Phd2 LKO mice, although this difference did not reach statistical significance - mice were resistant to lactic acidosis induced by injection (Fig. 1B). To examine the mechanisms responsible for this un- of a lethal dose of lactate, displaying a significant elongation of sur- expected observation, we measured lactate levels in mice sub- vival. Moreover, oral administration of a PHD inhibitor improved sur- jected to treadmill exercise. Blood lactate levels were significantly vival in an endotoxin shock mice model. These data suggest that PHD2 is a potentially novel drug target for the treatment of lactic acidosis, which is a serious and often fatal complication observed in Significance some critically ill patients. When oxygen availability becomes limited, organs and cells ac- hypoxic response | PHD inhibitor | hyperlactatemia | gluconeogenesis | tivate the hypoxic response to generate energy. This response sepsis releases a large amount of lactate into the circulation as a result of anaerobic glycolysis. However, we found that activating the hypoxic response in the liver by inhibiting the oxygen sensor n metazoans, the cellular enzyme lactate dehydrogenase (LDH) prolyl hydroxylase domain-containing protein 2 (PHD2) en- converts pyruvate to lactate, which is then exported from cells. I hances the uptake of lactate for gluconeogenesis, also known as Lactate efflux is increased under hypoxic conditions, where avail- the Cori cycle, and ameliorates lactic acidosis. Our findings sug- able molecular oxygen is limited. The cellular response to hypoxia is gest that PHD2 serves as a viable drug target for the treat- mainly regulated by the heterodimeric transcription factor hypoxia- ment of life-threatening lactic acidosis, which is frequent inducible factor (HIF), which consists of an unstable alpha subunit complication of severe infectious and ischemic diseases, as well α β (HIF ) and a stable beta subunit (HIF ) (1, 2). HIF prolyl hy- as of biguanide treatment in patients with diabetes with droxylases called PHDs (PHD1–PHD3) (3) target HIFα for ubiq- renal failure. uitin-proteasome-dependent protein degradation under normoxic conditions, lowering HIF levels and suppressing HIF signaling. Author contributions: T.S., T.H., M.K., W.G.K., M.S., and Y.A.M. designed research; T.S., Under hypoxic conditions, PHDs become inactive because they re- T.H., M.K., N.H., T.O., W.G.K., M.S., and Y.A.M. performed research; T.S., T.H., M.K., W.G.K., M.S., and Y.A.M. analyzed data; and T.S., T.H., M.K., T.N., A.K., H.M., W.G.K., M.S., and Y.A.M. quire molecular oxygen for enzymatic activity. This inactivation leads wrote the paper. α to HIF stabilization and activation of HIF signaling. Activated HIF Reviewers included: R.J.D., University of Texas-Southwestern Medical Center. up-regulates genes involved in various events, including erythro- The authors declare no conflict of interest. cytosis, neovascularization, and anaerobic glycolysis. HIF activation 1T.S., T.H., and M.K. contributed equally to this work. enhances anaerobic glycolysis by up-regulating glucose trans- 2To whom correspondence may be addressed. Email: [email protected], porters and glycolytic enzymes, including lactate dehydro- [email protected], or [email protected]. genase A (LDHA), and monocarboxylate transporters, leading This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. to enhanced lactate secretion. 1073/pnas.1515872112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1515872112 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 ABC D E p=0.000548 p=2.19x10-19 0.9 p=0.00101 9 9 5 5 p=0.891 0.15 0.8 8 8 4 4 0.7 7 7 p=0.325 0.6 6 6 0.10 3 3 0.5 5 p=0.248 5 0.4 4 4 2 2 0.3 3 3 0.05 0.2 2 2 1 1 Phd2/Actb 0.1 1 1 0 Blood lactate level (mM) 0 Blood lactate level (mM) 0 0 0 0 +/+ -/- Urinary lactate level (mM) Urinary lactate level (mM) Lactate efflux (pmol/h/cell) Phd2 Phd2 Control (n=3) Control (n=3) 0 min 20 min Control (n=7) MEFs MEFs Phd2-SKO (n=3) Phd2-SKO (n=3) Control (n=3) Phd2-SKO (n=3) Phd2-LKO (n=8) FG H p=0.00202 p=0.0396 7 7 80 6 6 10 9 200 p=0.0000253 5 5 70 (mM) 8 4 4 7 150 p=0.405 3 3 60 6 5 * † 2 2 100 50 4 ‡ 1 1 3 Control (n=8) § 50 0 0 40 2 Blood lactate level (mM) Blood lactate level (mM) Phd2-LKO (n=7) Time to exhaustion (min) 1 Control Phd2-LKO 0 Control (n=11) Control (n=11) Blood lactate level 0 (n=11) (n=12) 0 5 10 15 20 Control Phd2-LKO Phd2-LKO (n=12) Phd2-LKO (n=12) Time (min) Blood lactate AUC (mM x min) (n=8) (n=7) + + − − Fig. 1. Inactivation of Phd2 in the liver reduces blood lactate levels. (A) Lactate efflux analysis in Phd2 / and Phd2 / MEFs. Values were from triplicated dishes. Error bars indicate 1 SEM. (B) The blood lactate level in Control and Phd2-SKO mice. Error bars, SEM. (C) The blood lactate level 50 min after the treadmill in Control and Phd2-SKO mice. Error bars, SEM. (D) Urinary lactate measurement. Lactate levels in urine were measured before (Left) and 20 min after (Right) the lactate injection in Control and Phd2-SKO mice. Error bars, SEM. (E) Real-time RT-PCR analysis of Phd2 mRNA in the livers of Control and Phd2-LKO mice. Error bars, SEM. (F) Blood lactate levels in Control and Phd2-LKO mice. Error bars, SEM. (G) Treadmill experiment in Control and Phd2-LKO mice. The blood lactate levels 50 min after the exercise (Left) and time to exhaustion (Right) are shown. Error bars, SEM. (H) Lactate tolerance test. 0.5 mg per gram body weight of lactate was intraperitoneally injected, and the blood lactate levels were measured at the indicated time (Left). Area under the curve (AUC) was also analyzed (Right). Error bars, SEM. *P = 0.0448; †P = 0.000342; ‡P = 0.000118; §P = 2.53 × 10−7 versus Control. lower in Phd2-SKO mice after treadmill exercise compared to in the Phd2-LKO mice after 50 min of treadmill exercise were control mice (Fig. 1C). This result suggested that systemic in- significantly lower than in the control mice (Fig.
Recommended publications
  • Cori Cycle Activity in Man
    Cori cycle activity in man Christine Waterhouse, Julian Keilson J Clin Invest. 1969;48(12):2359-2366. https://doi.org/10.1172/JCI106202. Research Article 12 subjects have been studied after an overnight fast with trace amounts of pyruvate-3-14C and glucose-6-14C. Blood disappearance curves and incorporation of the pyruvate-3-14C label into blood glucose have been determined. By the use of transfer functions which allow processes with many different chemical steps to be examined as a unit, we have determined the per cent of pyruvate and presumably lactate which is regenerated into glucose. 8 of the 12 subjects showed that 7-23 mg/kg per hr are recycled, while 4 subjects fell well outside this range. Correlation of increased activity was not good with any demonstrated metabolic abnormality (diabetes or obesity), and it is suggested from clinical observation of the subjects that anxiety may play a role. Find the latest version: https://jci.me/106202/pdf Cori Cycle Activity in Man CHRISTIE WATERHOUSE and JULLAN KEISON From the Department of Medicine, University of Rochester School of Medicine and Dentistry and the Department of Statistics, University of Rochester College of Arts and Sciences, Rochester, New York 14620 ABSTRACT 12 subjects have been studied after an glucose derived from lactate and pyruvate. The analysis overnight fast with trace amounts of pyruvate-3-'4C and itself also views glucose as distributed in a homogeneous glucose-6-'4C. Blood disappearance curves and incorpora- pool within the body, thus neglecting the early portion tion of the pyruvate-3-14C label into blood glucose have of the glucose 'C disappearance curve.
    [Show full text]
  • Hungry for Your Alanine: When Liver Depends on Muscle Proteolysis
    The Journal of Clinical Investigation COMMENTARY Hungry for your alanine: when liver depends on muscle proteolysis Theresia Sarabhai1,2 and Michael Roden1,2,3 1Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany. 2German Center for Diabetes Research, München-Neuherberg, Germany. 3Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany. β-oxidation and the acetyl-CoA pool, which Fasting requires complex endocrine and metabolic interorgan crosstalk, allosterically activates pyruvate carboxylase flux (V ), and which, together with glycerol which involves shifting from glucose to fatty acid oxidation, derived from PC adipose tissue lipolysis, in order to preserve glucose for the brain. The as substrate, maintains the rates of hepatic gluconeogenesis and endogenous glucose glucose-alanine (Cahill) cycle is critical for regenerating glucose. In this issue production (V ) (8). of JCI, Petersen et al. report on their use of an innovative stable isotope EGP tracer method to show that skeletal muscle–derived alanine becomes rate Liver–skeletal muscle controlling for hepatic mitochondrial oxidation and, in turn, for glucose metabolic crosstalk production during prolonged fasting. These results provide new insight Other metabolic pathways are also known into skeletal muscle–liver metabolic crosstalk during the fed-to-fasting to connect skeletal muscle and liver. The transition in humans. Cori
    [Show full text]
  • Thèse De Doctorat
    THÈSE DE DOCTORAT Rôle des microARNs et de leur machinerie dans les hépatocytes et les cellules béta pancréatiques Role of microRNAs and their machinery in hepatocytes and pancreatic beta cells Gaia FABRIS IRCAN CNRS UMR 7284 – INSERM U1081 Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Sciences Francesco Beguinot, Professeur d’Université Côte d’Azur d’Endocrinologie, Università di Napoli Mention : interactions moléculaires et Federico II cellulaires Giulia Chinetti, Professeure de Biochimie, Dirigée par : Giulia Chinetti UCA Nice Co-encadrée par : Patricia Lebrun Magalie Ravier, CRCN, Inserm, IGF Soutenue le : 7 Juin 2019 Montpellier Emmanuel Van Obberghen, Professeur de Biochimie, UCA Nice Rôle des microARNs et de leur machinerie dans les hépatocytes et les cellules béta pancréatiques Jury : Président de jury Emmanuel Van Obberghen, Professeur de Biochimie, UCA Nice Rapporteurs Faeso Beguiot, Pofesseu d’Endocrinologie, Département de Médecine translationnelle Université de Naples Federico II, Italie Magalie Ravier, CRCN, Inserm, Institut de Génomique Fonctionnelle Montpellier, France Résumé Das le foie oal de l’adulte les hpatotes sot das u tat de uiesee, sauf los d’ue situatio d’agessio phsiue ou toique. Dans ces cas-là, afin de pouvoir aitei leu ôle das l’hoostasie de l’ogaise les hpatotes edoags ou sauvegardés vont proliférer. Un des facteurs limitants pour la prolifération est la psee d’aides ais, ui sot essaies pour la synthèse des protéines au cours de la polifatio et diisio ellulaie, et pou l’atiatio de la oie TOR, ui joue un rôle clef dans la régulation de la prolifération cellulaire.
    [Show full text]
  • Hepatocyte Specific Expression of an Oncogenic Variant of Β-Catenin Results in Lethal Metabolic Dysfunction in Mice
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 13), pp: 11243-11257 Research Paper Hepatocyte specific expression of an oncogenic variant of β-catenin results in lethal metabolic dysfunction in mice Ursula J. Lemberger1,2, Claudia D. Fuchs2, Christian Schöfer3, Andrea Bileck4, Christopher Gerner4, Tatjana Stojakovic5, Makoto M. Taketo6, Michael Trauner2, Gerda Egger1,7 and Christoph H. Österreicher8 1Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria 2Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria 3Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria 4Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria 5Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria 6Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan 7Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria 8Institute of Pharmacology, Medical University Vienna, Vienna, Austria Correspondence to: Ursula J. Lemberger, email: [email protected], [email protected] Keywords: Wnt signaling pathway; liver cancer; lipid metabolism; glucose metabolism; mitochondrial disorder Received: August 31, 2017 Accepted: January 25, 2018 Published: January 30, 2018 Copyright: Lemberger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Background: Wnt/β-catenin signaling plays a crucial role in embryogenesis, tissue homeostasis, metabolism and malignant transformation of different organs including the liver. Continuous β-catenin signaling due to somatic mutations in exon 3 of the Ctnnb1 gene is associated with different liver diseases including cancer and cholestasis.
    [Show full text]
  • Glycolysis and Gluconeogenesis
    CC7_Unit 2.3 Glycolysis and Gluconeogenesis Glucose occupies a central position in the metabolism of plants, animals and many microorganisms. In animals, glucose has four major fates as shown in figure 1. The organisms that do not have access to glucose from other sources must make it. Plants make glucose by photosynthesis. Non-photosynthetic cells make glucose from 3 and 4 carbon precursors by the process of gluconeogenesis. Glycolysis is the process of enzymatic break down of one molecule of glucose (6 carbon) into two pyruvate molecules (3 carbon) with the concomitant net production of two molecules of ATP. The complete glycolytic pathway was elucidated by 1940, largely through the pioneering cotributions of Gustav Embden, Otto Meyerhof, Carl Neuberg, Jcob Parnad, Otto Wrburg, Gerty Cori and Carl Cori. Glycolysis is also known as Embden-Meyerhof pathway. • Glycolysis is an almost universal central pathway of glucose catabolism. • Glycolysis is anaerobic process. During glycolysis some of the free energy is released and conserved in the form of ATP and NADH. • Anaerobic microorganisms are entirely dependent on glycolysis. • In most of the organisms, the pyruvate formed by glycolysis is further metabolised via one of the three catabolic routes. 1) Under aerobic conditions, glucose is oxidized all the way to C02 and H2O. 2) Under anaerobic conditions, the pyruvic acid can be fermented to lactic acid or to 3) ethanol plus CO2 as shown in figure 2. • Glycolytic breakdown of glucose is the sole source of metabolic energy in some mammalian tissues and cells (RBCs, Brain, Renal medulla and Sperm cell). Glycolysis occurs in TEN steps.
    [Show full text]
  • The Impact of Acute Thermal Stress on the Metabolome of the Black Rockfish (Sebastes Schlegelii)
    RESEARCH ARTICLE The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii) 1☯³ 1☯³ 1 1 1 1 Min SongID , Ji Zhao , Hai-Shen Wen *, Yun Li *, Ji-Fang Li , Lan-Min Li , Ya- Xiong Tao2 1 Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China, 2 Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America a1111111111 ☯ These authors contributed equally to this work. a1111111111 ³ These authors are co-first authors on this work. a1111111111 * [email protected] (HSW); [email protected] (YL) a1111111111 a1111111111 Abstract Acute change in water temperature causes heavy economic losses in the aquaculture industry. The present study investigated the metabolic and molecular effects of acute ther- OPEN ACCESS mal stress on black rockfish (Sebastes schlegelii). Gas chromatography time-of-flight mass Citation: Song M, Zhao J, Wen H-S, Li Y, Li J-F, Li spectrometry (GC-TOF-MS)-based metabolomics was used to investigate the global meta- L-M, et al. (2019) The impact of acute thermal stress on the metabolome of the black rockfish bolic response of black rockfish at a high water temperature (27ÊC), low water temperature (Sebastes schlegelii). PLoS ONE 14(5): e0217133. (5ÊC) and normal water temperature (16ÊC). Metabolites involved in energy metabolism and https://doi.org/10.1371/journal.pone.0217133 basic amino acids were significantly increased upon acute exposure to 27ÊC (P < 0.05), and Editor: Jose L. Soengas, Universidade de Vigo, no change in metabolite levels occurred in the low water temperature group.
    [Show full text]
  • 8. 2020-New METABOLISM in CANCER CELLS-Students
    METABOLIC ALTERATIONS IN CANCER CELLS METABOLIC CHARACTERISTICS OF CANCER CELLS Increased GLYCOLYTIC ACTIVITY (Warburg Effect) Increased production of LACTATE Loss of PASTEUR’S EFFECT (Oxygen inhibition of glycolysis) INCREASED CONSUMPTION Cox4- of GLUTAMINE 2 INCREASED PROTEIN SYNTHESIS DECREASED PROTEOLYSIS DECREASED SYNTHESIS OF FATTY ACIDS (increased lipolysis from host adipose tissue) ENERGETIC METABOLISM IN TUMOURS • WARBURG EFFECT • In the 1920s, Otto Warburg observed that tumor cells consume a large amount of glucose, much • more than normal cells, and convert most of it to lactic acid. This phenomenon, now known as the • ‘Warburg effect,’ is the foundation of one of the earliest general concepts of cancer: that a • fundamental disturbance of cellular metabolic activity is at the root of tumor formation and growth. Biography Otto Heinrich Warburg: • Born-October 8, 1883 in Germany • Died-August 1, 1970 in Berlin, Germany • Son of physicist Emil Warburg • Otto was a German physiologist and medical doctor. • He won a Nobel prize in Physiology and Medicine for his Warburg effect in 1931. • He was one of the twentieth century's leading biochemist One of his Lectures… • "Cancer, above all other diseases, has countless secondary causes. But, even for cancer, there is only one prime cause. Summarized in a few words, the prime cause of cancer is the replacement of the respiration of oxygen in normal body cells by a fermentation of sugar… " -- Dr. Otto H. Warburg in Lecture The Warburg hypothesis The prime cause of cancer is the replacement of the respiration of oxygen…by a fermentation of sugar…” Injury of respiration Aerobic glycolysis De-differentiation Normal cell Phase I Phase II Phase III Cancer cell The Warburg Effect • Pyruvate is an end-product of glycolysis, and is oxidized within the mitochondria.
    [Show full text]
  • Biological Chemistry I: Endings to Glycolysis
    Chemistry 5.07SC Biological Chemistry Fall Semester, 2013 I Lecture 15/16 Endings to Glycolysis: how to regenerate NAD+ and reversible conversion of P to alanine. I. There are three endings to glycolysis. We will look at each transformation and the energetic consequences. 1. Homolactate fermentation which occurs in muscle under anaerobic conditions. 2. Ethanol production which occurs in yeast under anaerobic conditions and is central to the beer and wine industry. 3. AcetylCoA production in aerobic metabolism and a segway into the TCA cycle. 4. We will also discuss conversion of pyruvate to alanine using Vitamin B6, pyridoxal phosphate. PLP is central to all amino acid metabolism and reversible conversion of α- ketoacids and amino acids is central to feeding intermediates into/ and removal of intermediates from the TCA cycle. 1. Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate (P) to lactate (L) using NADH as the cofactor: This ending of the glycolysis pathway is utilized when the demand for ATP is high and the O2 supply is low. Anaerobic glycolysis can continue at high rates for 1 to 3 min. Generation of ATP by this mechanism is much faster than the O/P pathway. In muscles, lactic acid is the end product produced and is transported through the blood to the liver, where it can be converted back to pyruvate and used to make glucose. Lactic acid requires a transporter in muscles and is coupled to H+ transport. Contrary to general belief, it is not lactic acid buildup that causes muscle fatigue and soreness; this phenotype occurs on too long a time scale.
    [Show full text]
  • Part 2 Biochemistry of Hormones. Metabolism of Carbohydrates and Lipids Частина 2 Біохімія Гормонів. О
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 2 BIOCHEMISTRY OF HORMONES. METABOLISM OF CARBOHYDRATES AND LIPIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 2 БІОХІМІЯ ГОРМОНІВ. ОБМІН ВУГЛЕВОДІВ ТА ЛІПІДІВ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою Радою ХНМУ Протокол № 12 від 20.10.2016 р. Харків ХНМУ 2016 Self-study guide for students of general medicine faculty in biochemistry. Part 2: Biochemistry of hormones. Metabolism of carbohydrates and lipids / Comp.: O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. et al. – Kharkiv: KhNMU, 2016. – 84 p. Covpilers: Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів). Частина 2. Біохімія гормонів. Обмін вуглеводів і ліпідів / Упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків: ХНМУ, 2016. – 84 с. Упорядники: О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in «Biological Chemistry» Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підручник. Кн. 2 Біологічна хімія / Ю.І. Губський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін.; за ред. Ю.І. Губського, І.В. Ніженковської. – К.: ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія. Підручник / Губський Ю.І. – Київ-Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ-Тернопіль: Укрмедкнига, 2000. – 508 с. 4. Гонський Я.І. Біохімія людини. Підручник / Гонський Я.І., Максимчук Т.П., Калинський М.І.
    [Show full text]
  • Gerty Theresa Cori
    NATIONAL ACADEMY OF SCIENCES G ERTY THERESA C ORI 1896—1957 A Biographical Memoir by J OSEPH LARNER Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1992 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. GERTY THERESA CORI August 8, 1896-October 26, 1957 BY JOSEPH LARNER ERTY AND CARL CORI'S most significant contributions Gwere the establishment of the cycle of carbohydrates known as "the Cori Cycle," the isolation of glucose 1-phos- phate, and the discovery of phosphorylase and phospho- glucomutase. These discoveries established the enzymatic pathways of glycogenolysis and glycolysis. In glycogen metabolism, Gerty Cori pioneered in the discovery of the debranching enzyme amylo-l,6-glucosidase and its use in the elucidation of glycogen structure by se- rial enzymatic degradation. This pioneering work led to the elucidation of the enzymatic defects in the glycogen storage diseases. Her studies, therefore, extended funda- mental scientific discoveries into the clinical arena, most particularly in the field of pediatrics, her original area of clinical interest and specialization. Gerty Theresa Radnitz was born on August 8, 1896, in Prague, at that time part of the Austro-Hungarian empire. Otto Radnitz, her father, was director general of a sugar refinery in Bohemia. Her mother's brother was professor of pediatrics at the University of Prague. Gerty studied at home until the age of ten, when she went to a girls' prepa- ratory school, from which she graduated in 1912. In 1914, after passing her final examination (matura) at the Tetschen 111 112 BIOGRAPHICAL MEMOIRS Real Gymnasium, she enrolled as a medical student at the Carl Ferdinand University, the German university of Prague.
    [Show full text]
  • Study of Vesicular Glycolysis in Health and Huntington's Disease
    Study of vesicular glycolysis in health and Huntington’s Disease Maximilian Mc Cluskey To cite this version: Maximilian Mc Cluskey. Study of vesicular glycolysis in health and Huntington’s Disease. Neurons and Cognition [q-bio.NC]. Université Grenoble Alpes [2020-..], 2021. English. NNT : 2021GRALV006. tel-03251320 HAL Id: tel-03251320 https://tel.archives-ouvertes.fr/tel-03251320 Submitted on 7 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES Spécialité : Neurosciences, Neurobiologie Arrêté ministériel : 25 mai 2016 Présentée par Maximilian Mc CLUSKEY Thèse dirigée par Frédéric SAUDOU et co-encadrée par Anne-Sophie NICOT préparée au sein du Grenoble Institut des Neurosciences dans l'École Doctorale de Chimie et Sciences du Vivant Study of vesicular glycolysis in health and Huntington’s disease Thèse soutenue publiquement le 04/02/2021, devant le jury composé de : Mr, Frédéric, DARIOS Chargé de recherche INSERM, Institut du Cerveau, rapporteur Mme, Carine, POURIÉ Professeure
    [Show full text]
  • Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk
    RESEARCH ARTICLE Metabolic Response to Heat Stress in Late- Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk Franziska Koch1☯, Ole Lamp1,2☯, Mehdi Eslamizad1,3, Joachim Weitzel4, Björn Kuhla1* 1 Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 2 Schleswig Holstein Chamber of Agriculture, Department of Animal production, Futterkamp, Blekendorf, Germany, 3 Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Tehran, Iran, 4 Institute of Reproductive Biology, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany a11111 ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Climate changes lead to rising temperatures during summer periods and dramatic eco- nomic losses in dairy production. Modern high-yielding dairy cows experience severe meta- Citation: Koch F, Lamp O, Eslamizad M, Weitzel J, bolic stress during the transition period between late gestation and early lactation to meet Kuhla B (2016) Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: the high energy and nutrient requirements of the fetus or the mammary gland, and addi- Implications to Liver-Muscle Crosstalk. PLoS ONE 11 tional thermal stress during this time has adverse implications on metabolism and welfare. (8): e0160912. doi:10.1371/journal.pone.0160912 The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake Editor: Andrew C. Gill, University of Edinburgh, and milk yield are not fully elucidated yet. To distinguish between feed intake and heat UNITED KINGDOM stress related effects, German Holstein dairy cows were first kept at thermoneutral condi- Received: April 5, 2016 tions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at Accepted: July 27, 2016 15°C for 6 days; in late-pregnancy and again in early lactation.
    [Show full text]