Computational Modeling and Optimization of a Multiple Tube Aerosol Flow Reactor for High Temperature Solar-Thermal Processes
Total Page:16
File Type:pdf, Size:1020Kb
COMPUTATIONAL MODELING AND OPTIMIZATION OF A MULTIPLE TUBE AEROSOL FLOW REACTOR FOR HIGH TEMPERATURE SOLAR-THERMAL PROCESSES by JANNA GAIL MARTINEK B.S., University of Colorado-Boulder, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemical and Biological Engineering 2012 This thesis entitled: Computational Modeling and Optimization of a Multiple Tube Aerosol Flow Reactor for High Temperature Solar-Thermal Processes written by Janna Gail Martinek has been approved for the Department of Chemical and Biological Engineering Alan W. Weimer (Chair) Christine Hrenya Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Martinek, Janna Gail (Ph.D., Chemical and Biological Engineering) Computational Modeling and Optimization of a Multiple Tube Aerosol Flow Reactor for High Temperature Solar-Thermal Processes Thesis directed by Professor Alan W. Weimer Concentrated solar energy can be used to provide the heat necessary to drive highly endothermic chemical reactions for renewable fuel production including thermal reduction of metal oxides for water-splitting cycles, and gasification of cellulosic biomass. A computational model coupling radiative transfer with fluid flow, heat transfer, mass transfer, and chemical reaction kinetics is developed for a solar receiver comprised of a specularly reflective cylindrical cavity with a windowed aperture and an array of five tubes. Finite volume techniques for radiative transfer provide accurate depictions of diffuse energy emitted by heated surfaces, but fail to produce viable solutions for solar energy with computationally reasonable mesh sizes. A hybrid Monte Carlo/finite volume strategy is proposed for radiative transfer and coupled with a three-dimensional steady state computational fluid dynamics model describing steam gasification of acetylene black. Maximum predicted temperatures for 6 kW solar power are 1813 K, 1343 K, and 1546 K at the center, front, and back tubes respectively, with corresponding reaction conversions of 40%, 2.5%, and 9.2%. Average discrepancies between temperatures predicted via the computational model and those experimentally measured on-sun up to 1700 K are 21-44 K (2-4%) for both ceramic and metallic tube materials. Predicted solar-to-chemical receiver efficiency is less than 4% with conduction and emission losses accounting for 55-69% and 11-25% of the solar input, respectively. iv Parameters describing operating conditions and receiver geometry are exploited to optimize the solar-to-chemical efficiency for both cooled reflective and insulated absorbing cavity designs scaled to accept 8 kW solar power. Tubes positioned outside of the solar beam fail to achieve adequate reaction conversion and contribute heavily to conduction losses in reflective cavity designs. Ideal configurations produce up to 13% solar-to-chemical efficiency and contain three moderately sized tubes situated within the solar beam and set back from the aperture such that a portion of the solar energy reflects off of the cavity wall. Insulated absorbing cavity designs are characterized by comparatively greater temperature uniformity, higher reaction conversion, and diminished conduction losses. Ideal configurations produce up to 35% efficiency and contain three large tubes which may be partially located outside of the solar beam. v CONTENTS CHAPTER I INTRODUCTION, BACKGROUND AND SCOPE 1.1 Motivation and Scope ..................................................................................1 1.1.1 Motivation ........................................................................................1 1.1.2 Scope ...............................................................................................4 1.2 Background and literature review ................................................................7 1.2.1 Solar-thermal processes ...................................................................7 1.2.2 Design and efficiency of current receivers ....................................10 1.2.3 Transport and radiation modeling ..................................................13 1.2.4 Modeling gasification kinetics .......................................................16 1.2.5 Receiver optimization ....................................................................19 References ..............................................................................................................20 II THERMODYNAMIC AND PRACTICAL LIMITATIONS ON RECEIVER EFFICIENCY 2.1 Abstract ......................................................................................................31 2.2 Introduction ................................................................................................32 2.3 Theory ........................................................................................................33 2.4 Results ........................................................................................................35 2.5 Conclusions ................................................................................................41 Nomenclature ........................................................................................................ 42 References ..............................................................................................................42 III DEVELOPMENT OF A MONTE CARLO MODEL FOR TRANSPORT OF SOLAR RADIATION 3.1 Introduction ................................................................................................45 3.2 Development of the model .........................................................................46 3.2.1 Specification of wavelength ...........................................................51 3.2.2 Specification of initial ray position ................................................51 3.2.3 Specification of initial ray direction ..............................................54 3.2.4 Reflection/transmission at external window surface .....................58 3.2.5 Selection of surface interaction ......................................................59 3.2.6 Selection of surface reflection/absorption .....................................60 3.2.7 Extension to emission by heated surface .......................................64 3.3 Comparison of model results with configuration factors ...........................65 3.4 Conclusions ................................................................................................69 Nomenclature .........................................................................................................70 References ..............................................................................................................72 vi IV EVALUATION OF FINITE VOLUME SOLUTIONS FOR THERMAL RADIATIVE HEAT TRANSFER IN A CLOSED CAVITY SOLAR RECEIVER FOR HIGH TEMPERATURE SOLAR THERMAL PROCESSES 4.1 Abstract ......................................................................................................74 4.2 Introduction ................................................................................................75 4.3 Radiation models .......................................................................................77 4.3.1 Finite Volume method ...................................................................78 4.3.2 Monte Carlo method ......................................................................80 4.4 Results and Discussion ..............................................................................80 4.4.1 Collimated incident solar radiation ................................................83 4.4.2 Diffuse incident solar radiation ......................................................88 4.4.3 Solar absorption efficiency ............................................................94 4.4.4 Emitted energy ...............................................................................97 4.4.5 Evaluation of 3D finite volume models .......................................102 4.6 Overall Modeling Strategy .......................................................................104 4.7 Conclusions ..............................................................................................106 Nomenclature .......................................................................................................106 References ............................................................................................................108 V COMPUTATIONAL MODELING AND ON-SUN MODEL VALIDATION FOR A MULTIPLE TUBE SOLAR AEROSOL FLOW REACTOR WITH SPECULARLY REFLECTIVE CAVITY WALLS 5.1 Abstract ....................................................................................................111 5.2 Introduction ..............................................................................................112 5.3 Radiation model .......................................................................................114 5.3.1 Characterization of the solar flux profile .....................................114 5.3.2 Modeling strategy for radiation in the receiver cavity .................119 5.3.3 Monte Carlo model for solar radiation .........................................121 5.3.4 Finite volume model for emitted energy ......................................126 5.3.5 Optical properties .........................................................................133