Reproductive Biology of Mouse and Dwarf Lemurs of Eastern

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology of Mouse and Dwarf Lemurs of Eastern View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks@UMass Amherst University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2010 Reproductive Biology of Mouse and Dwarf Lemurs of Eastern Madagascar, With an Emphasis on Brown Mouse Lemurs (Microcebus rufus) at Ranomafana National Park, A Southeastern Rainforest Marina Beatriz Blanco University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Anthropology Commons Recommended Citation Blanco, Marina Beatriz, "Reproductive Biology of Mouse and Dwarf Lemurs of Eastern Madagascar, With an Emphasis on Brown Mouse Lemurs (Microcebus rufus) at Ranomafana National Park, A Southeastern Rainforest" (2010). Open Access Dissertations. 246. https://scholarworks.umass.edu/open_access_dissertations/246 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. REPRODUCTIVE BIOLOGY OF MOUSE AND DWARF LEMURS OF EASTERN MADAGASCAR, WITH AN EMPHASIS ON BROWN MOUSE LEMURS (MICROCEBUS RUFUS ) AT RANOMAFANA NATIONAL PARK, A SOUTHEASTERN RAINFOREST A Dissertation Presented by MARINA BEATRIZ BLANCO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Anthropology © Copyright by Marina Beatriz Blanco 2010 All Rights Reserved REPRODUCTIVE BIOLOGY OF MOUSE AND DWARF LEMURS OF EASTERN MADAGASCAR, WITH AN EMPHASIS ON BROWN MOUSE LEMURS (MICROCEBUS RUFUS ) AT RANOMAFANA NATIONAL PARK, A SOUTHEASTERN RAINFOREST A Dissertation Presented by MARINA BEATRIZ BLANCO Approved as to style and content by: _______________________________________ Laurie R. Godfrey, Chair _______________________________________ Lynnette L. Sievert, Member _______________________________________ Nancy G. Forger, Member _______________________________________ Michael R. Sutherland, Member ____________________________________ Elizabeth Chilton, Department Chair Anthropology DEDICATION To the unforgetable nocturnal lemurs of Madagascar, especially to mouse lemur female “J” who (un)willingly shared so many estrous cycles and pregnancies during my field work years. ACKNOWLEDGMENTS After years of academic endeavors, emotional turmoil, field work and collaborations I find it almost impossible to name everyone who has contributed in one way or another to support, help and make my almost perennial graduate career enjoyable. To my committee members I am greatly thankful. Dr. Nancy Forger warmly agreed to read, revise and suggest comments on mammalian reproduction and graciously supported my ever-changing project. Dr. Mike Sutherland introduced me to the multiple dimensions of statistics, when I was barely getting around with my English back in 2000. His passion, excitement and teaching skills, helped me understand, think and answer relevant questions, even though I was quite inexperienced in playing with numbers, much less multidimensional spaces. This dissertation does not show off the fancy statistics I learned from him, but his lessons will always accompany me. Also, I am grateful to Mike because he supported me financially in the early years of my graduate career. Dr. Lynnette Sievert nurtured my work from the early stages, with questions and comments that were thoughtful, insightful and helpful. Lynnette has been extremely influential since I first arrived at UMASS. She introduced me to the multiple dimensions of life far from home, with doses of affection, warmth, humor and friendship I will cherish forever. Finally, I am greatly thankful to Dr. Laurie Godfrey for answering that first e-mail from Argentina (when I barely knew how to connect to the Internet or send an e-mail) and for letting me apply to the Graduate Program at UMASS to work with her. Her generosity is beyond words. She has offered (on innumerable occasions) her house, food, time, ideas, enthusiasm and editing skills (she would be editing these very same words if she could) to make things happen and help me grow (academically) to my fullest potential. I v have learned from her to pay attention to the tiniest details as much as to explore big- picture questions, to think around driving hypotheses and be optimistic despite my nature. I will always remember to find the “hook”, check the flow and go full circle in every paper I write. Thank you Laurie, I cannot imagine my future academic career without you. Over the multiple reproductive seasons I spent in the field, I met a multitude of researchers, assistants and helpers. Dr. Patricia Wright is probably the reason I got to Ranomafana in the first place. Her enthusiasm, passion and commitment to Madagascar, its people and its biodiversity has greatly impacted me during my stays at the Centre ValBio. I am also grateful to Jukka Jernvall for his generosity. Thank you to Anja Deppe for her willingness to accommodate our research projects and for sharing not only our study animals, the mouse lemurs, but also lab space and equipment. I feel very lucky to have met Stacey Tecot whose appreciation for people, lemurs, nature, and food in the forest was highly contagious. I wish I could have helped her more. Many people unselfishly helped, among others: Earthwatcher volunteers (Sherry Griffiths, David Buckle), Deanna Teaven, An Bollen, Jeff Wyatt, Cathy Williams, Heidi Viljanen, Felix Ratelolahy, Erik Patel, Hannah Thomas, Andrea Baden, Sarah Zohdy, Jessica Carag. Thank you to my research assistants from Centre ValBio,Victor Rasendrinirina and Jean Claude Rakotonirina, for climbing the trees, putting up with multiple daily walks to the forest and working long hours at night. I appreciate your companionship and hard work. I was very lucky to work closely with several Malagasy students: Mamihasimbola Rakotondratsima, Misa Randriamiarisoa and Vololonirina Rahalinarivo. Vololona, your participation in the dwarf lemur project has been invaluable and I am looking forward to vi working with you in the near future. Thank you also to Anna Feistner, Jean Claude Razafimahaimodison, Desire (Dede) Randrianarisata and other Centre ValBio staff. I am grateful to Mitch Irwin for introducing me to Tsinjoarivo forest. His help and encouragement were valuable to get my small project started. Thank you also to Jean-Luc Raharison for his logistic help, and to the local assistants, especially to Edmond Razanadrakoto, his wife Christine Razanamanana, Noel Rakotoniaina and Nirina Razanadrakoto. I hope to continue to work with you for many years to come. You have been very warm and welcoming. I have been inspired by your sense of community, respect and solidarity, your skills, and eagerness to share knowledge, laughs and food. [Tsy hadino ihany koa ireo olona rehetra nandray anjara sy nanampy ahy mivantana tamin’ny fikarohana, indrindra Andriamatoa Edmond Razanadrakoto sy ny vadiny Christine Razanamanana, Noel Rakotoniaina ary Nirina Razanadrakoto. Manantena ny hanohy hiara-miasa aminareo indray amin’ny taona maro ho avy. Niara-niasa toy ny mpirahalahy mian’ala isika ary nanan-kavana tokoa nanana anareo. Nanohina ahy tokoa ny finiavanareo hizara ny traikefanareo tanatin’ny fifanajana, firaisan-kina, hehy sy ny tohaka, ary ny “kaly”]. Research in Madagascar was facilitated by staff from the Association Nationale pour la Gestion des Aires Protégées (ANGAP), in particular Aimée Razafiarimalala, the Institute for the Conservation of Tropical Environments (ICTE, Stony Brook) and the Madagascar Institute pour la Conservation des Ecosystèmes Tropicaux, (MICET), especially its director, Benjamin Andriamihaja who was not only very helpful in addressing all sort of logistic issues, but always had a smile on his face. Work presented in this dissertation has been funded by the David J. Klingener Endowment and Graduate vii Fellowship, University of Massachusetts, MMBF/Conservation International Primate Action Fund, Primate Conservation Inc., the Rufford Foundation, Helsinki Biotechnology Institute, Margot Marsh Biodiversity Foundation, and National Science Foundation. I would like to thank friends and colleagues in Amherst, Massachusetts with whom I spent a lot of time, despite my asocial nature, and with whom I shared data, academic and vain conversations, meals and occasional glasses of wine. Special thanks to Jaime Piñero and Isabel Jácome, with whom I shared unforgettable adventures and enjoyed every day life. Thank you Steve King and Meg Gage for your friendship and for providing me with temporary housing when I needed it the most; Kate Wellspring and Erin Linehan whose companionship inside and outside classrooms made my cultural shock less traumatic; Stacey Matarazzo, Idalia Rodriguez and Emilienne Rasoazanabary for innumerable hours in W-16, feeling cold, hot, excited and frustrated about life, thank you so much Emilienne for helping me with the translations to Malagasy. I have to especially thank my family, in particular my parents, Roberto Blanco and Alicia Borrego for letting me follow a vague dream, for keeping their doubts and worries aside and supporting my work, even if they had no clue what I was interested in 10 years ago. I am so thankful for their blind trust and confidence on me. [Un agradecimiento especial para mi familia, en particular
Recommended publications
  • Strengths and Weaknesses of the Gray Mouse Lemur
    Strengths and Weaknesses of the Gray Mouse Lemur (Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia Fabien Pifferi, Jacques Epelbaum, Fabienne Aujard To cite this version: Fabien Pifferi, Jacques Epelbaum, Fabienne Aujard. Strengths and Weaknesses of theGray Mouse Lemur (Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia. Frontiers in Pharmacology, Frontiers, 2019, 10, 10.3389/fphar.2019.01291. hal-02393164 HAL Id: hal-02393164 https://hal.archives-ouvertes.fr/hal-02393164 Submitted on 10 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 30 October 2019 doi: 10.3389/fphar.2019.01291 Strengths and Weaknesses of the Gray Mouse Lemur (Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia Fabien Pifferi 1, Jacques Epelbaum 1,2 and Fabienne Aujard 1* 1 UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France, 2 Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France Edited by: To face the load of the prevalence of Alzheimer’s disease in the aging population, Bjorn Johansson, Karolinska Institutet (KI), Sweden there is an urgent need to develop more translatable animal models with similarities to Reviewed by: humans in both the symptomatology and physiopathology of dementia.
    [Show full text]
  • Cheirogaleus Medius)
    American .Journal of Primatology 38:349-355 (1996) • BRIEF REPORTS Xanthogranuloma of the Choroid Plexus in the Fat-Tailed Dwarf Lemur (Cheirogaleus medius) JASON T. LEE', CAROL A. MILLER',', COLIN T. McDONALD', AND JOHN M. ALLMAN' IDivision ofBiology, California Institute of Technology, Pasadena, California; 2Department ofNeurology, Massachusetts General Hospital, Boston, Massachusetts; and 'Department of Pathology, University of Southern California, School of Medicine, Los Angeles, California This report documents the death of two fat-tailed dwarf lemurs (Cheirogaleus medius) maintained over 6 years each in our laboratory. Postmortem studies revealed xanthogranuloma of the choroid plexus, a mass replete with stored lipids, including cholesterol crystals. Six months prior to their deaths, both animals developed a peculiar head tilt and signs suggestive of neurological dysfunction. At autopsy, each had masses pro­ jecting into the lateral and IVth ventricles and an associated obstructive hydrocephalus. Cryostat sections of the brains of both lemurs showed his­ tological features consistent with xanthogranuloma ofthe choroid plexus, a histologically benign and usually asymptomatic lesion found in up to 7% of human autopsies. This case is of special interest because of the unique feeding strategies in the fat-tailed dwarf lemur. Since C. medius remains in torpor for 6 months out ofthe year during the time offood scarcity in the forests of Madagascar, the animal must accumulate large reserves of fat during its active period. In the laboratory, however, dwarf lemurs do not normally go into torpor, and the accumulated fat is not used. The finding of this tumor, therefore, suggests that the combination of a captive high­ fat diet and the unusual fat-storage mechanisms utilized by C.
    [Show full text]
  • Sleeping and Ranging Behavior of the Sambirano Mouse Lemur, Microcebus Sambiranensis
    Hending, D., McCabe, G., & Holderied, M. (2017). Sleeping and Ranging Behavior of the Sambirano Mouse Lemur, Microcebus sambiranensis. International Journal of Primatology. https://doi.org/10.1007/s10764-017-9997-2 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s10764-017-9997-2 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via [Springer at https://link.springer.com/article/10.1007%2Fs10764-017-9997-2. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Int J Primatol https://doi.org/10.1007/s10764-017-9997-2 Sleeping and Ranging Behavior of the Sambirano Mouse Lemur, Microcebus sambiranensis Dan Hending1,2 & Grainne McCabe2 & Marc Holderied1 Received: 9 June 2017 /Accepted: 2 September 2017 # The Author(s) 2017. This article is an open access publication Abstract Primates require secure sleeping sites for periods of rest, but despite their importance, the characteristics of desired sleeping sites are poorly known. Here we investigated the sleeping ecology of a radio-collared population of the Sambirano mouse lemur, Microcebus sambiranensis, during the nonreproductive season in the Anabohazo forest, northwestern Madagascar. We also investigated their ranging be- havior and examined the spatial distribution of sleeping sites within the home ranges of the collared individuals.
    [Show full text]
  • Isolation and Characterization of Olfactory Ecto-Mesenchymal Stem Cells from Eight Mammalian Genera Antoine D
    Veron et al. BMC Veterinary Research (2018) 14:17 DOI 10.1186/s12917-018-1342-2 METHODOLOGY ARTICLE Open Access Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera Antoine D. Veron1,2*, Cécile Bienboire-Frosini1, François Feron2,3, Elisa Codecasa1, Arnaud Deveze4,5, Dany Royer6, Paul Watelet7, Pietro Asproni1, Kevin Sadelli2, Camille Chabaud1, Jean-claude Stamegna2, Joël Fagot8, Michel Khrestchatisky2, Alessandro Cozzi1, François S. Roman2, Patrick Pageat1, Manuel Mengoli1† and Stéphane D. Girard2,9† Abstract Background: Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, “olfactory ecto-mesenchymal stem cells” (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated.
    [Show full text]
  • Analysis of Deforestation Patterns in the Central Menabe, Madagascar, Between 1973 and 2010
    Reg Environ Change (2014) 14:157–166 DOI 10.1007/s10113-013-0475-x ORIGINAL ARTICLE Analysis of deforestation patterns in the central Menabe, Madagascar, between 1973 and 2010 Dietmar Zinner • Christian Wygoda • Leon Razafimanantsoa • Rodin Rasoloarison • Herizo T. Andrianandrasana • Jo¨rg U. Ganzhorn • Frank Torkler Received: 17 September 2012 / Accepted: 3 May 2013 / Published online: 24 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The central Menabe region still holds the largest Keywords Madagascar Á Deforestation Á Dry forest Á remnant of dry forest in western Madagascar. These forests Satellite image time series Á Remote sensing Á Political are home to high floral and faunal diversity including a crisis number of local and regional endemics. The forests of the central Menabe have been classified as conservation hot- spots. However, pressure on these forests is strong and Introduction deforestation continues on a large scale. To quantify recent forest loss, we used a series of satellite images (1973–2010) Madagascar, the world’s fourth largest island of approxi- for estimating annual deforestation rates. The overall rate mately 587,000 km2, is located off the south-eastern coast was 0.67 %, but it accelerated during certain periods to over of Africa. It is regarded as one of the major biodiversity 1.5 % with a maximum of 2.55 % per year between 2008 hotspots (Myers et al. 2000), because it harbours excep- and 2010. Not all areas within the forest block of the central tional biota with high overall diversity and levels of Menabe are affected similarly.
    [Show full text]
  • Extending the Known Distribution of Nicosia's Chameleon
    Herpetology Notes, volume 14: 455-460 (2021) (published online on 26 February 2021) Extending the known distribution of Nicosia’s chameleon, Furcifer nicosiai Jesu, Mattioli & Schimmenti, 1999 (Squamata: Chamaeleonidae) Francesco Belluardo1,*, Gonçalo M. Rosa2,3, Franco Andreone4, Elodie A. Courtois5, Javier Lobón-Rovira1, Ronald A. Nussbaum6, Miary Raselimanana7, Malalatiana Rasoazanany7, Christopher J. Raxworthy8, and Angelica Crottini1 The genus Furcifer Fitzinger, 1843 includes 24 region (Fig. 1, white circles; Table 1) (Randrianantoandro species of chameleons, most of which are endemic to et al., 2008; Raselimanana, 2008; Bora et al., 2010; Madagascar (Glaw and Vences, 2007; Uetz et al., 2020). Randriamoria, 2011; Brown et al., 2014; Goodman et Furcifer nicosiai Jesu, Mattioli & Schimmenti, 1999 al., 2018). Furcifer nicosiai habitat encompasses dense is a medium-sized species belonging to the Furcifer sub-humid and dry forests of low elevation, between verrucosus (Cuvier, 1829) phenetic group (Glaw and 57–571 m above sea level ~ a.s.l. (Bora et al., 2010). Vences, 2007). Although slightly smaller, F. nicosiai is Several records within the Menabe region (within the morphologically similar to Furcifer oustaleti (Mocquard, Paysage Harmonieux Protégé de Menabe Antimena, 1894), whose subadults can be mistaken with adults of about 60 km south of Tsingy de Bemaraha) refer to this species (Glaw and Vences, 2007). a population of F. nicosiai that appears to have some With Tsingy de Bemaraha as the type locality of F. morphological differences to the population from the nicosiai (Jesu et al., 1999), the species was thought to type locality. A molecular characterisation is needed have a distribution limited to western Madagascar, with, to assess the taxonomic identity of these populations, until now, only a few additional records in the Melaky but for consistency we here continue to assign them to this species (Raselimanana, 2008; Randrianantoandro et al., 2010; Eckhardt et al., 2019) (Fig.
    [Show full text]
  • Hibernation in Pygmy Lorises (Nycticebus Pygmaeus) – What Does It Mean?
    Vietnamese Journal of Primatology (2017) vol.2(5), 51-57 Hibernation in pygmy lorises (Nycticebus pygmaeus) – what does it mean? Ulrike Streicher1,3, Julia Nowack2, Gabrielle Stalder2, Christian Walzer2, Tilo Nadler3 and Thomas Ruf2 1 Current address: Cascades Raptor Center, Eugene, USA 2 University of Veterinary Medicine, Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria, Savoyenstr. 1, 110 Vienna, Austria 3 Endangered Primate Rescue Center, Cuc Phương National Park, Nho Quan District, Ninh Bình Province, Vietnam Corresponding author: Ulrike Streicher <u.streicher1612@gmail.com> Key words: South-East Asia, primate, torpor, multiday torpor, pygmy loris, hibernation Summary Torpor use in primates appeared to be restricted to African species and was only recently discovered in a species from Asia, the pygmy loris (Nycticebus pygmaeus). This finding has considerable implications for our perception of torpor in this mammal group and demonstrates that torpor is probably more widespread in mammals than commonly thought. This article summarizes the current knowledge on the use of torpor in the pygmy loris and places it into the context of ongoing research on this topic. Hiện tượng ngủ đông ở loài culi nhỏ (Nycticebus pygmaeus) – Ý nghĩa là gì? Tóm tắt Hiện tượng ngủ đông ở các loài linh trưởng được cho rằng chỉ tồn tại ở một số loài linh trưởng ở Châu Phi. Gần đây hiện tượng này được khám phá ở một loài linh trưởng ở Châu Á, loài culi nhỏ (Nycticebus pygmaeus). Phát hiện mới này có thể thay đổi nhận thức của chúng ta về hiện tượng ngủ đông ở nhóm thú này và nó cũng minh chứng rằng hiện tượng ngủ đông có thể phổ biến ở nhiều loài thú khác hơn những gì chúng ta thường nghĩ.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • Mouse Lemurs' and Degraded Habitat
    bioRxiv preprint doi: https://doi.org/10.1101/216382; this version posted November 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Mouse lemurs’ use of degraded habitat 2 Running head: Mouse lemurs use degraded habitat 3 Simon KNOOPi,ii*, Lounès CHIKHIi,iii,iv, Jordi SALMONAi,iii,iv* 4 i Instituto Gulbenkian de Ciencia, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal. 5 ii Geographisches Institut, Universiät Heidelberg, Heidelberg, Germany 6 iii CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Evolution & Diversité Biologique), 7 Toulouse, France 8 iv Université de Toulouse, UMR 5174 EDB, Toulouse, France 9 * Corresponding authors: 10 Simon Knoop: Email: simon.knoop@gmx.de 11 Jordi Salmona: Email: jordi.salmona@gmail.com 12 bioRxiv preprint doi: https://doi.org/10.1101/216382; this version posted November 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 RESEARCH HIGHLIGHTS 14 Little differences in the use of degraded forest (DF) between forest types, distribution 15 ranges or conservation status. 16 Varying factors potentially affecting DF use, such as food resources, forest structure, tree 17 hole availability and predation. 18 19 ABSTRACT 20 Madagascar is known for its unique biodiversity including its endemic primates, the lemurs.
    [Show full text]
  • What Are Mouse Lemurs? in the WILD in CAPTIVITY
    Gray mouse lemurs (Microcebus murinus): A novel animal model in research Alice S.O. Hong¹, Jozeph L. Pendleton², Caitlin J. Karanewsky², Mark A. Krasnow², Megan A. Albertelli¹ ¹Department of Comparative Medicine, ²Department of Biochemistry and the Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA What are mouse lemurs? In the WILD In CAPTIVITY • Mouse lemurs (Microcebus spp.) A wild mouse lemur in its natural • Follow the Guide for the Care and contain the smallest primates in environment in Madagascar. Use of Laboratory Animals and the world Animal Welfare Act • Prosimians (primates of the • Temperature condition: 74-80ºF Strepsirrhine group) • Humidity condition: 44-65% • Gray mouse lemur (Microcebus (dependent on season) murinus) is 80-100 grams in body weight. • Food: fruit, vegetables, primate biscuits, meal worms • ~24 species in genus • Caging: Marmoset housing cages • Cryptic species (similar (Britz & Company) morphology but different o genetics) Single housing o Group housing • Native to Madagascar in west and A captive mouse lemur resting on perch in south coast regions • Enrichment provided: its cage at Stanford University. • Hot and tropical climate o Sanded down PVC pipes Research Uses • Arboreal (live in trees) o External and cardboard nest boxes • Research in animal’s biological • Live in various environments: and physiological characteristics o Fleece blankets o Dry deciduous trees o Reproductive biology o Rain forests o Torpor, food restriction o Spiny deserts o Manipulation of photoperiod o Thornbushes o Sex differences with behavior • Eat fruits, flowers, invertebrates, o Metabolism small vertebrates, gum/sap A captive gray mouse lemur resting on a o Genetic variation researcher’s hand at Stanford University.
    [Show full text]
  • Geogenetic Patterns in Mouse Lemurs (Genus Microcebus)
    PAPER Geogenetic patterns in mouse lemurs (genus COLLOQUIUM Microcebus) reveal the ghosts of Madagascar’s forests past Anne D. Yodera,b,1, C. Ryan Campbella, Marina B. Blancob, Mario dos Reisc, Jörg U. Ganzhornd, Steven M. Goodmane,f, Kelsie E. Hunnicutta, Peter A. Larsena, Peter M. Kappelerg, Rodin M. Rasoloarisong,h, José M. Ralisonh, David L. Swofforda, and David W. Weisrocki aDepartment of Biology, Duke University, Durham, NC 27708; bDuke Lemur Center, Duke University, Durham, NC 27705; cSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom; dTierökologie und Naturschutz, Universität Hamburg, 20146 Hamburg, Germany; eField Museum of Natural History, Chicago, IL 60605; fAssociation Vahatra, BP 3972, Antananarivo 101, Madagascar; gBehavioral Ecology and Sociobiology Unit, German Primate Centre, 37077 Goettingen, Germany; hDépartement de Biologie Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar; and iDepartment of Biology, University of Kentucky, Lexington, KY 40506 Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved May 4, 2016 (received for review February 18, 2016) Phylogeographic analysis can be described as the study of the geolog- higher elevations (generally above 1,900 m), the montane forest ical and climatological processes that have produced contemporary habitat gives way to an Ericaceae thicket. Along the western half of geographic distributions of populations and species. Here, we attempt the island, below 800 m elevation and to the west of the Central to understand how the dynamic process of landscape change on Highlands, the montane forests shift to dry deciduous forest dom- Madagascar has shaped the distribution of a targeted clade of mouse inated by drought-adapted trees and shrubs.
    [Show full text]
  • Taxonomic Revision of Mouse Lemurs (Microcebus) in the Western Portions of Madagascar
    International Journal of Primatology, Vol. 21, No. 6, 2000 Taxonomic Revision of Mouse Lemurs (Microcebus) in the Western Portions of Madagascar Rodin M. Rasoloarison,1 Steven M. Goodman,2 and Jo¨ rg U. Ganzhorn3 Received October 28, 1999; revised February 8, 2000; accepted April 17, 2000 The genus Microcebus (mouse lemurs) are the smallest extant primates. Until recently, they were considered to comprise two different species: Microcebus murinus, confined largely to dry forests on the western portion of Madagas- car, and M. rufus, occurring in humid forest formations of eastern Madagas- car. Specimens and recent field observations document rufous individuals in the west. However, the current taxonomy is entangled due to a lack of comparative material to quantify intrapopulation and intraspecific morpho- logical variation. On the basis of recently collected specimens of Microcebus from 12 localities in portions of western Madagascar, from Ankarana in the north to Beza Mahafaly in the south, we present a revision using external, cranial, and dental characters. We recognize seven species of Microcebus from western Madagascar. We name and describe 3 spp., resurrect a pre- viously synonymized species, and amend diagnoses for Microcebus murinus (J. F. Miller, 1777), M. myoxinus Peters, 1852, and M. ravelobensis Zimmer- mann et al., 1998. KEY WORDS: mouse lemurs; Microcebus; taxonomy; revision; new species. 1De´partement de Pale´ontologie et d’Anthropologie Biologique, B.P. 906, Universite´ d’Antana- narivo (101), Madagascar and Deutsches Primantenzentrum, Kellnerweg 4, D-37077 Go¨ t- tingen, Germany. 2To whom correspondence should be addressed at Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605, USA and WWF, B.P.
    [Show full text]