Alactic Observer Gjohn J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Wunda-Full World? Carbon Dioxide Ice Deposits on Umbriel and Other Uranian Moons
Icarus 290 (2017) 1–13 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons ∗ Michael M. Sori , Jonathan Bapst, Ali M. Bramson, Shane Byrne, Margaret E. Landis Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f o a b s t r a c t Article history: Carbon dioxide has been detected on the trailing hemispheres of several Uranian satellites, but the exact Received 22 June 2016 nature and distribution of the molecules remain unknown. One such satellite, Umbriel, has a prominent Revised 28 January 2017 high albedo annulus-shaped feature within the 131-km-diameter impact crater Wunda. We hypothesize Accepted 28 February 2017 that this feature is a solid deposit of CO ice. We combine thermal and ballistic transport modeling to Available online 2 March 2017 2 study the evolution of CO 2 molecules on the surface of Umbriel, a high-obliquity ( ∼98 °) body. Consid- ering processes such as sublimation and Jeans escape, we find that CO 2 ice migrates to low latitudes on geologically short (100s–1000 s of years) timescales. Crater morphology and location create a local cold trap inside Wunda, and the slopes of crater walls and a central peak explain the deposit’s annular shape. The high albedo and thermal inertia of CO 2 ice relative to regolith allows deposits 15-m-thick or greater to be stable over the age of the solar system. -
Signature Redacted Signature of Author: Department of Earth, Atmospheric and Planetary Sciences August 1, 2014 Signature Redacted Certified By: Maria T
Judging a Planet by its Cover: Insights into Lunar Crustal Structure and Martian Climate History from Surface Features by MASSACHUSEr rS INTrrlJTE OF TECHN CLOGY Michael M. Sori 20RE B.S. in Mathematics, B.A. in Physics L C I Duke University, 2008 LIBRA RIES Submitted to the Department of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Planetary Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2014 2014 Massachusetts Institute of Technology. All rights reserved. Signature redacted Signature of Author: Department of Earth, Atmospheric and Planetary Sciences August 1, 2014 Signature redacted Certified by: Maria T. Zuber E. A. Griswold Professor of Geophysics & Vice President for Research Signature redacted Thesis Supervisor Accepted by: Robert D. van der Hilst Schlumberger Professor of Earth Sciences Head, Department of Earth, Atmospheric and Planetary Sciences 2 Judging a Planet by its Cover: Insights into Lunar Crustal Structure and Martian Climate History from Surface Features By Michael M Sori Submitted to the Department of Earth, Atmospheric and Planetary Sciences on June 3, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Orbital spacecraft make observations of a planet's surface in the present day, but careful analyses of these data can yield information about deeper planetary structure and history. In this thesis, I use data sets from four orbital robotic spacecraft missions to answer longstanding questions about the crustal structure of the Moon and the climatic history of Mars. In chapter 2, I use gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to constrain the quantity and location of hidden volcanic deposits on the Moon. -
The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile
The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C 1 mm ^^ 5 -fc;- Jj. -f->^ -J^' ' _." ^P^-Arvx^B^ »""*- 'S y^'ir'*'*'/?' trK* ^-7 A5*^v;'VvVr*'^**s! ^^^^V'^"^"''"X^^i^^?l^"%^ - ! ^ Pecoraite, Wolf Creek meteorite of Australia. Upper, Pecoraite grains separated by hand picking from crack fillings in the meteorite (X 25). Lower, Pecoraite grains lining the walls of some cracks in the meteorite. The extent of disintegration of the original metal lic phases into new phases, chiefly goethite and maghemite, is apparent (X 2.3). THE DISINTEGRATION OF THE WOLF CREEK METEORITE AND THE FORMATION OF PECORAITE, THE NICKEL ANALOG OF CLINOCHRYSOTILE The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile By GEORGE T. FAUST, JOSEPH J. FAHEY, BRIAN H. MASON and EDWARD J. DWORNIK STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO2 -H2O AND THE SYSTEMS CONTAINING THE CONGENERS OF MAGNESIUM GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C Origin of pecoraite elucidated through its properties and in terms of the geochemical balance in its desert environment UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600160 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.30 Stock -
Workshop on Lunar Crater Observing and Sensing Satellite (LCROSS) Site Selection, P
WORKSHOP PROGRAM AND ABSTRACTS LPI Contribution No. 1327 WWWOOORRRKKKSSSHHHOOOPPP OOONNN LLLUUUNNNAAARRR CCCRRRAAATTTEEERRR OOOBBBSSSEEERRRVVVIIINNNGGG AAANNNDDD SSSEEENNNSSSIIINNNGGG SSSAAATTTEEELLLLLLIIITTTEEE (((LLLCCCRRROOOSSSSSS))) SSSIIITTTEEE SSSEEELLLEEECCCTTTIIIOOONNN OOOCCCTTTOOOBBBEEERRR 111666,,, 222000000666 NNNAAASSSAAA AAAMMMEEESSS RRREEESSSEEEAAARRRCCCHHH CCCEEENNNTTTEEERRR MMMOOOFFFFFFEEETTTTTT FFFIIIEEELLLDDD,,, CCCAAALLLIIIFFFOOORRRNNNIIIAAA SSSPPPOOONNNSSSOOORRRSSS LCROSS Mission Project NASA Ames Research Center Lunar and Planetary Institute National Aeronautics and Space Administration SSSCCCIIIEEENNNTTTIIIFFFIIICCC OOORRRGGGAAANNNIIIZZZIIINNNGGG CCCOOOMMMMMMIIITTTTTTEEEEEE Jennifer Heldmann (chair) NASA Ames Research Center/SETI Institute Geoff Briggs NASA Ames Research Center Tony Colaprete NASA Ames Research Center Don Korycansky University of California, Santa Cruz Pete Schultz Brown University Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1327 Compiled in 2006 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Agreement No. NCC5-679 issued through the Solar System Exploration Division of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for -
Behind His Father's Saying: Robert Frost's Wisdom Tradition
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2014 Behind His Father's Saying: Robert Frost's Wisdom Tradition James H. Altman University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the American Literature Commons, History Commons, and the Philosophy Commons Repository Citation Altman, James H., "Behind His Father's Saying: Robert Frost's Wisdom Tradition" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2056. http://dx.doi.org/10.34917/5836075 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. BEHIND HIS FATHER’S SAYING: ROBERT FROST’S WISDOM TRADITION by James Altman Bachelor of Science in Secondary Education University of Nevada, Las Vegas 2004 Master of Arts in English University of Nevada, Las Vegas 2008 A dissertation submitted in partial -
Crater Lake National Park Natural Resource Condition Assessment
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Crater Lake National Park Natural Resource Condition Assessment Natural Resource Report NPS/NRSS/WRD/NRR—2013/724 ON THE COVER Crater Lake in June. Photo courtesy of the National Park Service Crater Lake National Park Natural Resource Condition Assessment Natural Resource Report NPS/NRSS/WRD/NRR—2013/724 Paul R. Adamus Water Resources Science Program Oregon State University Corvallis, Oregon and Adamus Resource Assessment, Inc. Corvallis, Oregon Dennis C. Odion, Gregory V. Jones, Lorin C. Groshong, Ryan Reid Department of Environmental Studies Southern Oregon University Ashland, Oregon This report was prepared under Task Agreement J8W07100032 (Cooperative Agreement H8W07060001) between the National Park Service and Southern Oregon University. November 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; monitoring protocols; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters. -
Mount Mazama and Crater Lake: a Study of the Botanical and Human Responses to a Geologic Event
AN ABSTRACT OF THE THESIS OF Robyn A. Green for the degree of Master of Arts in Interdisciplinary Studies in Geology. Botany and Plant Pathology. and Anthropology presented on June 3. 1998. Title: Mount Mazama and Crater Lake: A Study of the Botanical and Human Responses to a Geologic Event Abstract approved: / Robert J. Lillie Crater Lake, located in the southern Cascade mountains of Oregon, is the seventh deepest lake in the world. Unlike a majority of the deepest lakes in the world, found in continental rift valleys, Crater Lake is in the caldera of a volcano. For the young at heart and mind, those willing to descend (and ascend) about 700 feet to Cleetwood Cove can undertake a boat tour of Crater Lake. From the boat, Crater Lake is more than just a beautiful blue lake; it becomes the inside of a volcano, where the response of people and plants to a geologic event can be investigated. The catastrophic eruption of Mount Mazama 7,700 years ago affected both plant and human populations. Before pumice and ash from the volcano blanketed the landscape like freshly fallen snow, the forests to the east of Mount Mazama were dominated by ponderosa and lodgepole pine. Within the immediate vicinity of the volcano all life was obliterated; the force of the eruptive material toppled vegetation and buried it with ash and pumice. Through the recovery process of succession, life has slowly returned to Crater Lake. Forests surrounding the lake are now dominated by mountain hemlock, whitebark pine, and lodgepole pine. These plants not only depict the process of succession, but also of adaptation to a volcanic environment. -
North Polar Region Craterforms on Mars: Geometric Characteristics from the Mars Orbiter Laser Altimeter
Icarus 144, 329–352 (2000) doi:10.1006/icar.1999.6298, available online at http://www.idealibrary.com on North Polar Region Craterforms on Mars: Geometric Characteristics from the Mars Orbiter Laser Altimeter James B. Garvin NASA–Goddard Space Flight Center, Geodynamics, Code 921, Greenbelt, Maryland 20771 E-mail: [email protected] Susan E. H. Sakimoto USRA at NASA–Goddard Space Flight Center, Code 921, Greenbelt, Maryland 20771 James J. Frawley Herring Bay Geophysics, Raytheon-STX, at NASA–Goddard Space Flight Center, Code 921, Greenbelt, Maryland 20771 and Charles Schnetzler SSAI at NASA–Goddard Space Flight Center, Code 920, Greenbelt, Maryland 20771 Received February 15, 1999; revised September 20, 1999 geologically recent surface, with evidence of effusive volcanism and This study focuses on topographic characterization of ice- enhanced sedimentation. In addition, the measured impact crater associated north polar region impact craters and several enigmatic depths for ice-associated craters suggest at least a few cases of en- polar craterforms using new information from the Mars Orbiter hanced excavation and thus a possibly weaker target relative to the Laser Altimeter (MOLA), an instrument aboard the Mars Global typical northern hemisphere plains. c 2000 Academic Press Surveyor (MGS) orbiter. We find that, for ice-associated craters, the Key Words: Mars; impact craters; polar processes; ejecta; topography reveals several surprising results not previously appar- volcanism. ent from orbital images alone. First, geometric properties for several impact craters associated with ice and frost deposits suggest that cavity infill is as high as 80% of reconstructed, preerosion levels. INTRODUCTION Second, craters associated with ice also demonstrate unique cav- ity geometries relative to their nonpolar counterparts. -
Unravelling the Mystery of Lunar Anomalous Craters Using Radar
Journal of Geophysical Research: Planets RESEARCH ARTICLE Unravelling the Mystery of Lunar Anomalous Craters Using 10.1029/2018JE005668 Radar and Infrared Observations Key Points: 1,2 3 • We constructed orthorectified global Wenzhe Fa and Vincent R. Eke Mini-RF mosaics and analyzed 1 2 anomalous craters in radar and Institute of Remote Sensing and Geographical Information System, Peking University, Beijing, China, Lunar and infrared images Planetary Science Laboratory, Macau University of Science and Technology, Macau, China, 3Institute for Computational • Anomalous craters are not Cosmology, Department of Physics, Durham University, Durham, UK overabundant over the lunar polar regions once sampling variations are accounted for • Anomalous craters actually represent Abstract In Miniature Radio Frequency (Mini-RF) radar images, anomalous craters are those having a an intermediate stage of normal high circular polarization ratio (CPR) in their interior but not exterior to their rims. Previous studies found crater evolution that most CPR-anomalous craters contain permanently shadowed regions and that their population is overabundant in the polar regions. However, there is considerable controversy in the interpretation of these Supporting Information: signals: Both water ice deposits and rocks/surface roughness have been proposed as the source of the • Supporting Information S1 elevated CPR values. To resolve this controversy, we have systematically analyzed >4,000 impact craters with •DataSetS1 diameters between 2.5 and 24 km in the Mini-RF radar image and Diviner rock abundance (RA) map. We first constructed two controlled orthorectified global mosaics using 6,818 tracks of Mini-RF raw data and then Correspondence to: analyzed the correlations between radar CPR and surface slope, RA, and depth/diameter ratios of impact W. -
Examination of Gully Sites on Mars with the Shallow Radar Daniel Cahn Nunes,1 Suzanne E
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E10004, doi:10.1029/2009JE003509, 2010 Examination of gully sites on Mars with the shallow radar Daniel Cahn Nunes,1 Suzanne E. Smrekar,2 Ali Safaeinili,2,3 John Holt,4 Roger J. Phillips,5 Roberto Seu,6 and Bruce Campbell7 Received 17 September 2009; revised 21 January 2010; accepted 22 February 2010; published 12 October 2010. [1] Martian gullies, found on steep slopes along broad mid‐latitudinal bands, have morphologies resembling those of water‐carved gullies on Earth and have been dated to <10 Ma. As such, one of the leading hypotheses, though not unique, is that martian gullies formed by the flow of liquid water in the very recent geologic past. Since the permittivity of liquid water is about one order of magnitude higher than that of most silicates, it is plausible that subsurface geologic interfaces involving liquid water may be detected via ground penetrating radar. We have surveyed a substantive portion of the martian gully population with data from the Shallow Radar (SHARAD) instrument, on board the Mars Reconnaissance Orbiter (MRO), in search of strong subsurface radar reflections indicative of the presence of liquid water reservoirs, which would serve as sources to the flows occurring within gullies. No such reflections are found at most of the locations surveyed, suggesting that either liquid water is not likely present in detectable amounts or that the shallow martian subsurface is unusually electrically conductive (i.e., lossy) at all of the locations examined. Strong subsurface reflections occur in the vicinity of gullies at two locations in the northern lowlands: Arcadia and southeastern Utopia Planitiae. -
Abundances, 62 Accelerometer, 200 Accretion, 27, 52, 300 Disk, 23
INDEX abundances, 62 density, 244 accelerometer, 200 leading hemisphere, 245 accretion, 27, 52, 300 amino acid, 354 disk, 23, 29, 30, 52, 219 Amirani flow field, 309 efficiency, 52 ammonia, 22, 44, 59, 60, 63, 64, 73, 74, 79, 82, 86, 89, 91, 110, gas, 30, 31 117, 136, 137, 173, 291, 297, 299, 300 isolation mass, 28 abundance, 107 oligarchic growth, 28 depletion, 71 rapid, 29 ice, 68, 90-92, 100 rate, 27, 30 mixing ratio, 123 runaway, 28 photolysis, 72, 97 slow, 29 solid, 86 acetylene, 67, 129, 131, 132, 138 ammonia cloud, 71, 80, 82 Achilles, 264 ammonia hydrate, 297 Adastea, 673 ammonium hydrosulfide, 68, 72, 79, 83, 86, 89, 91, 100 adiabat ammonium hydrosulfide cloud, 79 dry, 116 ammonium salt, 67 moist, 116 amorphous ice, 7 4 adiabatic cooling, 80 Ampere's law, 540 adiabatic invariant, 622 Ananke, 265, 268 adiabatic mirroring, 651 angular momentum, 23, 27-29, 31, 122, 655 Adlinda, 417-419 Anshar Sulcus, 367, 374-376 Adrastea, 237, 241, 243, 244, 246, 247, 249, 254, 256, 258, 498, anticyclone, 114 671 Antilochus, 27 4 aeronomy, 190, 214 approach movies, 106 aerosol, 60, 67, 82, 83, 87, 91, 98, 109, 111, 463 aqueous alteration, 268 absorption, 149 Arbela Sulcus, 368, 376, 377 carbonaceous, 97 argon, 20, 26, 37, 74 density, 82 Ariel, 122 extinction, 95 arsenic, 67 formation, 98 arsine, 66, 67, 136 loading, 143 Asgard, 417-419 mixing ratio, 95 Asgard Basin, 401, 402 production, 151 asteroid, 451 SL9, 150 differentiated, 268 Agenor Linea, 337 main belt, 263, 271 airglow, 384 asthenosphere, 286 albedo, 91 asthenospheric flow, 366 bolometric, -
Evidence for Exposed Water Ice in the Moon's
Icarus 255 (2015) 58–69 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements ⇑ Paul O. Hayne a, , Amanda Hendrix b, Elliot Sefton-Nash c, Matthew A. Siegler a, Paul G. Lucey d, Kurt D. Retherford e, Jean-Pierre Williams c, Benjamin T. Greenhagen a, David A. Paige c a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States b Planetary Science Institute, Pasadena, CA 91106, United States c University of California, Los Angeles, CA 90095, United States d University of Hawaii, Manoa, HI 96822, United States e Southwest Research Institute, Boulder, CO 80302, United States article info abstract Article history: We utilize surface temperature measurements and ultraviolet albedo spectra from the Lunar Received 25 July 2014 Reconnaissance Orbiter to test the hypothesis that exposed water frost exists within the Moon’s shad- Revised 26 March 2015 owed polar craters, and that temperature controls its concentration and spatial distribution. For locations Accepted 30 March 2015 with annual maximum temperatures T greater than the H O sublimation temperature of 110 K, we Available online 3 April 2015 max 2 find no evidence for exposed water frost, based on the LAMP UV spectra. However, we observe a strong change in spectral behavior at locations perennially below 110 K, consistent with cold-trapped ice on Keywords: the surface. In addition to the temperature association, spectral evidence for water frost comes from Moon the following spectral features: (a) decreasing Lyman- albedo, (b) decreasing ‘‘on-band’’ (129.57– Ices a Ices, UV spectroscopy 155.57 nm) albedo, and (c) increasing ‘‘off-band’’ (155.57–189.57 nm) albedo.