Social Integration of Macroparasites in Ant Societies: Ultimate and Proximate Mechanisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars
Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars András Tartally ( [email protected] ) University of Debrecen Norbert Szabó University of Debrecen Anna Ágnes Somogyi University of Debrecen Ferenc Báthori University of Debrecen Danny Haelewaters Ghent University András Mucsi Bezerédi str. 10, Cibakháza Ágnes Fürjes-Mikó University of Sopron-Forest Research Institute David R. Nash University of Copenhagen Research Article Keywords: Complex interactions, Maculinea, Myrmica scabrinodis, Parasitology, Phengaris alcon, Rickia wasmannii Posted Date: July 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-712976/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Exploitation of organisms by multiple parasite species is common in nature, but interactions among parasites have rarely been studied. Myrmica ants are rich in parasites. Among others, the ectoparasitic Rickia wasmannii fungus and the socially parasitic caterpillars of myrmecophilous Phengaris butteries often infect the same Myrmica colonies. In this study, we examined the effects of R. wasmannii on the adoption, long-term development, and survival of P. alcon. In laboratory conditions, caterpillars introduced into nests of Myrmica scabrinodis uninfected with R. wasmannii survived signicantly longer compared to caterpillars introduced into infected nests. In the eld, joint infection was less common than expected if both parasites exploited M. scabrinodis colonies independently. Pre-pupal caterpillars of P. alcon were somewhat larger in nests infected with R. wasmannii than those found in uninfected nests. Based on these results it seems that R. wasmannii infection of M. scabrinodis affects the survival and development of P. -
Linear and Non-Linear Effects of Goldenrod Invasions on Native Pollinator and Plant Populations
Biol Invasions (2019) 21:947–960 https://doi.org/10.1007/s10530-018-1874-1 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Linear and non-linear effects of goldenrod invasions on native pollinator and plant populations Dawid Moron´ . Piotr Sko´rka . Magdalena Lenda . Joanna Kajzer-Bonk . Łukasz Mielczarek . Elzbieta_ Rozej-Pabijan_ . Marta Wantuch Received: 28 August 2017 / Accepted: 7 November 2018 / Published online: 19 November 2018 Ó The Author(s) 2018 Abstract The increased introduction of non-native and native plants. The species richness of native plants species to habitats is a characteristic of globalisation. decreased linearly with goldenrod cover, whereas the The impact of invading species on communities may abundance and species richness of bees and butterflies be either linearly or non-linearly related to the decreased non-linearly with increasing goldenrod invaders’ abundance in a habitat. However, non-linear cover. However, no statistically significant changes relationships with a threshold point at which the across goldenrod cover were noted for the abundance community can no longer tolerate the invasive species and species richness of hover flies. Because of the non- without loss of ecosystem functions remains poorly linear response, goldenrod had no visible impact on studied. We selected 31 wet meadow sites that bees and butterflies until it reached cover in a habitat encompassed the entire coverage spectrum of invasive of about 50% and 30–40%, respectively. Moreover, goldenrods, and surveyed the abundance and diversity changes driven by goldenrod in the plant and of pollinating insects (bees, butterflies and hover flies) D. Moron´ (&) Ł. Mielczarek Institute of Systematics and Evolution of Animals, Polish Department of Forests and Nature, Krako´w Municipal Academy of Sciences, Sławkowska 17, 31-016 Krako´w, Greenspace Authority, Reymonta 20, 30-059 Krako´w, Poland Poland e-mail: [email protected] e-mail: [email protected] P. -
Monism and Morphology at the Turn of the Twentieth Century
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUScholarWorks From a draft. May differ from the published version, which appeared in Monism: Science, Philosophy, Religion, and the History of a Worldview, ed. Todd Weir, 135–158, New York: Palgrave USA, 2012. Monism and Morphology at the Turn of the Twentieth Century SANDER GLIBOFF Indiana University Abstract. Ernst Haeckel’s monistic worldview and his interpretation of Darwin’s theory of evolution worked together to help him rule out any role for divine providence or any non-material mind, spirit, will, or purpose in the organic world. In his account of 1866, the impersonal, unpredictable, and purposeless external environment was what drove evolutionary change. By around the turn of the twentieth century, however, new theories of evolution, heredity, and embryology were challenging Haeckel’s, but Haeckel no longer responded with his earlier vigor. Younger monistically oriented evolutionary biologists had to take the lead in modernizing and defending the monistic interpretation and the external causes of evolution. Three of these younger biologists are discussed here: Haeckel’s student, the morphologist-turned-theoretician Richard Semon (1859–1918); Ludwig Plate (1862–1937), who took over Haeckel’s chair at the University of Jena and became an influential journal editor and commentator on new research on heredity and evolution; and Paul Kammerer (1880–1926), whose experimental evidence for the modifying power of the environment was hotly debated. Despite their very different social, political, and religious backgrounds, their contrasting research methods and career trajectories, and their disagreements on the precise mechanisms of evolution, these three were united by their adherence to Haeckelian monistic principles. -
Development of Microsatellite Loci and Optimization of a Multiplex Assay
www.nature.com/scientificreports OPEN Development of microsatellite loci and optimization of a multiplex assay for Latibulus argiolus (Hymenoptera: Ichneumonidae), the specialized parasitoid of paper wasps Agata Kostro‑Ambroziak1*, Anna Siekiera2, Magdalena Czajkowska3, Jan J. Pomorski2 & Hanna Panagiotopoulou2 Microsatellite loci are commonly used markers in population genetic studies. In this study, we present 40 novel and polymorphic microsatellite loci elaborated for the ichneumonid parasitoid Latibulus argiolus (Rossi, 1790). Reaction condition optimisation procedures allowed 14 of these loci to be co-amplifed in two PCRs and loaded in two multiplex panels onto a genetic analyser. The assay was tested on 197 individuals of L. argiolus originating from ten natural populations obtained from the host nests of paper wasps. The validated loci were polymorphic with high allele numbers ranging from eight to 27 (average 17.6 alleles per locus). Both observed and expected heterozygosity values were high, ranging between 0.75 and 0.92 for HO (mean 0.83) and from 0.70 to 0.90 for HE (mean 0.85). The optimized assay showed low genotyping error rate and negligible null allele frequency. The designed multiplex panels could be successfully applied in relatedness analyses and genetic variability studies of L. argiolus populations, which would be particularly interesting considering the coevolutionary context of this species with its social host. Te ichneumonid wasp Latibulus argiolus (Rossi, 1790) of the subfamily Cryptinae (Hymenoptera: Ichneumo- nidae) is a specialized ectoparasitoid of social paper wasps (Polistes Latreille, 1802) with respect to its larvae and pupae1,2. Because parasitoids use only one host for their full larval development3, they are under strong natural selection that in turn leads to optimal exploitation of the host 4. -
Heathlands a Lost World?
Heathlands A Lost World? Mattias Lindholm Institutionen för biologi och miljövetenskap Naturvetenskapliga fakulteten Akademisk avhandling för filosofie doktorsexamen i naturvetenskap med inriktning biologi, som med tillstånd från Naturvetenskapliga fakulteten kommer att offentligt försvaras fredag den 24 maj 2019, kl. 10.00 i Hörsalen, Botanhuset, Institutionen för biologi och miljövetenskap, Carl Skottsbergs gata 22B, Göteborg. Fakultetsopponent är Docent Erik Öckinger, Institutionen för ekologi, Sveriges lantbruksuniversitet, Uppsala. Heathlands – A Lost World? Mattias Lindholm Department of Biological and Environmental Sciences University of Gothenburg Box 461 SE405 30 Göteborg Sweden E-mail: [email protected] © Mattias Lindholm 2019 Cover: Heathland. Illustration by Per Axell ISBN 978-91-7833-446-9 (Printed) ISBN 978-91-7833-447-6 (PDF) http://hdl.handle.net/2077/59796 Printed by BrandFactory Group AB 2019 Till Valle och Arvid Figure 1. Arnica montana. Illustration by Kerstin Hagstrand-Velicu. Lindholm M. (2019) Heathlands – A Lost World? Mattias Lindholm, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE405 30 Göteborg, Sweden E-mail: [email protected] Keywords Heathland, Calluna, Conservation, Coleoptera, Carabidae, Lycosidae, Management, Restoration, Conservation strategy Abstract Heathland is a familiar landscape type in southwest Sweden. It is open with few trees, and the vegetation is dominated by dwarf-shrubs growing on nutrient-poor soils. Dry heaths with Heather Calluna vulgaris and wet heaths with Bell Heather Erica tetralix are common vegetation communities in the heathland, and they often form mosaics. The heathland landscape is highly threatened, with large substantial areal losses of 95% in Sweden since the 1800s. Heathland supports around 200 red-listed species, including plants, insects, birds and reptiles. -
Download PDF File
Myrmecological News 19 Digital supplementary material Digital supplementary material to DEJEAN, A., CORBARA, B., ROUX, O. & ORIVEL, J. 2014: The antipredatory behaviours of Neotropical ants towards army ant raids (Hymenoptera: Formicidae). – Myrmeco- logical News 19: 17-24. Appendix 1: Synthesis of the reactions of different ant species when faced with New World army ants. The size of the ecitonine colonies varies as follows: Eciton burchellii WESTWOOD, 1842: up to 650,000 workers (FRANKS 1985) and E. hamatum FABRICIUS, 1782: up to 250,000 workers (RETTENMEYER & al. 1983); Neivamyrmex nigrescens (CRESSON, 1872): 150,000 to 200,000 (SCHNEIRLA 1958); Nomamyrmex esenbeckii (WESTWOOD, 1842): 700,000 workers (RETTENMEYER 1963); Labidus praedator (F. SMITH, 1858): one million workers (HÖLLDOBLER & WILSON 1990). SF: subfamily; Dol: Dolichoderinae; Eci: Ecitoninae; Ect: Ectatomminae; Form: Formicinae; Myr: Myrmicinae; Par: Paraponerinae; Ps; Pseudomyrmecinae; Pon: Ponerinae. Raided ant species SF Army ant Details of the reactions References Avoided by army ants Acromyrmex coronatus Myr Eciton bur- Encountered Acromyrmex forager immobilized, crouched, SAN JUAN (2002) FABRICIUS, 1804 chellii (WEST- was antennated, then it moved; Eciton seemed repulsed. WOOD, 1842) Atta cephalotes (LINNAEUS, Myr Eciton No aggressiveness during the encounters. Once the raid RETTENMEYER 1758), Atta spp. burchellii traversed the Atta nest. (1963), this study Odontomachus spp. Pon Eciton hama- Avoided; seldom retrieved workers. RETTENMEYER & tum (FABRICI- al. (1983) US, 1782) Crematogaster spp. Myr Eciton spp. Avoided by Eciton as well as Neivamyrmex pilosus. RETTENMEYER & al. (1983) Myrmecocystus mimicus Myr Neivamyrmex Avoided; even F. pruinosus climbed over the raiders, MIRENDA & al. WHEELER, 1908, nigrescens which remained motionless. (1980) Forelius pruinosus (ROGER, Dol (CRESSON, 1863) 1872) Solenopsis xyloni MCCOOK, Myr Neivamyrmex Avoided but was raided by Neivamyrmex harrisi (speci- MIRENDA & al. -
Redalyc.A RECONCILIATION with DARWIN? ERICH WASMANN AND
Mètode Science Studies Journal ISSN: 2174-3487 [email protected] Universitat de València España Peretó, Juli; Català, Jesús I. A RECONCILIATION WITH DARWIN? ERICH WASMANN AND JAIME PUJIULA’S DIVERGENT VIEWS ON EVOLUTIONISM: BIOLOGISTS AND JESUIT Mètode Science Studies Journal, núm. 7, 2017, pp. 87-93 Universitat de València Valencia, España Available in: http://www.redalyc.org/articulo.oa?id=511754472013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MONOGRAPH Mètode Science StudieS Journal, 7 (2017): 87–93. University of Valencia. DOI: 10.7203/metode.7.7996 ISSN: 2174-3487. Article received: 03/02/2016, accepted: 11/04/2016. A RECONCILIATION WITH DARWIN? ERICH WASMANN AND JAIME PUJIULA’S DIVERGENT VIEWS ON EVOLUTIONISM: BIOLOGISTS AND JESUITS JULI PERETÓ AND JESÚS I. CATALÀ Unlike the case of Galileo, the Catholic Church has managed evolutionism and Charles Darwin’s work with discretion. Among Catholic scientists, some defend a variety of evolutionism which is peppered with remarkable exceptions, such as the divine origin of life and of the human species. The Jesuit entomologist Erich Wasmann came to the conclusion that the evolutionary theory could explain his observations about myrmecophiles, so he adopted a Catholicism-tinged evolutionism, which Ernst Haeckel considered false and very dangerous. The Jesuit biologist from Catalonia, Jaime Pujiula, continued Wasmann’s work but adopted stances that were more radical than the Austrian entomologist’s, like invoking the inescapable need for God’s intervention in the transition from inert matter to life. -
Nymphister Kronaueri Von Beeren & Tishechkin Sp. Nov., an Army Ant
BMC Zoology Nymphister kronaueri von Beeren & Tishechkin sp. nov., an army ant-associated beetle species (Coleoptera: Histeridae: Haeteriinae) with an exceptional mechanism of phoresy von Beeren and Tishechkin von Beeren and Tishechkin BMC Zoology (2017) 2:3 DOI 10.1186/s40850-016-0010-x von Beeren and Tishechkin BMC Zoology (2017) 2:3 DOI 10.1186/s40850-016-0010-x BMC Zoology RESEARCH ARTICLE Open Access Nymphister kronaueri von Beeren & Tishechkin sp. nov., an army ant-associated beetle species (Coleoptera: Histeridae: Haeteriinae) with an exceptional mechanism of phoresy Christoph von Beeren1,2* and Alexey K. Tishechkin3 Abstract Background: For more than a century we have known that a high diversity of arthropod species lives in close relationship with army ant colonies. For instance, several hundred guest species have been described to be associated with the Neotropical army ant Eciton burchellii Westwood, 1842. Despite ongoing efforts to survey army ant guest diversity, it is evident that many more species await scientific discovery. Results: We conducted a large-scale community survey of Eciton-associated symbionts, combined with extensive DNA barcoding, which led to the discovery of numerous new species, among them a highly specialized histerid beetle, which is formally described here. Analyses of genitalic morphology with support of molecular characters revealed that the new species is a member of the genus Nymphister. We provide a literature review of host records and host-following mechanisms of Eciton-associated Haeteriinae demonstrating that the new species uses an unusual way of phoretic transport to track the nomadic habit of host ants. Using its long mandibles as gripping pliers, the beetle attaches between the ants’ petiole and postpetiole. -
Term Review of the EU Biodiversity Strategy to 2020 in Relation to Target 3A – Agriculture
Service contract to support follow-up actions to the mid- term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture Final Report 19th June 2017 Funded by European Commission, DG Environment In collaboration with 2 Disclaimer: The arguments expressed in this report are solely those of the authors, and do not reflect the opinion of any other party. The report as a whole should be cited as follows: Siriwardena, G. and Tucker, G. (eds) (2017) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture. Report to the European Commission, Institute for European Environmental Policy, London. The following individual chapters should be cited as follows: Chapter 2: Siriwardena, G and Pringle, H (2017) Development of a methodology for the assessment of potential agriculture-related drivers on the status of habitats and species. In G Siriwardena & G Tucker (eds) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture, pp 25-48. Report to the European Commission, Institute for European Environmental Policy, London. Chapter 3: Pringle, H, Koeble, R, Paracchini M L, Rega, C, Henderson, I, Noble, D, Gamero, A, Vorisek, P, Škorpilová, J, Schmucki, R, Siriwardena, G, Allen, B, and Tucker, G (2017) Review of data sources and preparation of a metadatabase. In G Siriwardena & G Tucker (eds) Service contract to support follow-up actions to the mid-term review of the EU biodiversity strategy to 2020 in relation to target 3A – Agriculture, pp 49-60. -
Phylogeny and Evolution of Myrmecophily in Beetles, Based on Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae)
Phylogeny and Evolution Of Myrmecophily In Beetles, Based On Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Glené Mynhardt Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2012 Dissertation Committee: Johannes Klompen, Advisor Marymegan Daly Norman Johnson T. Keith Philips Copyright by Glené Mynhardt 2012 Abstract Ant-associated behavior has evolved rampantly among various groups of Arthropoda, and has arisen in at least 34 families of beetles. Due to the amazing morphological modifications and different kinds of interactions that occur within myrmecophilous (ant-associated) beetles, authors have predicted that myrmecophily has evolved in a step-wise fashion from casual, facultative associations to closely integrated, obligate interactions. In this dissertation, myrmecophily within the Coleoptera is reviewed, and known behaviors, ant-beetle interactions, and associated morphological adaptations are discussed. In order to better understand how myrmecophily has evolved, two groups of beetles are studied in a phylogenetic context. A cladistic analysis of 40 species of the myrmecophilous scarab genus, Cremastocheilu s Knoch is presented. Characters related to a myrmecophilous habit are largely informative, especially those characters related to the glandular trichomes (clusters of setae typically associated with exocrine glands). Two of the five previously recognized subgenera, C. (Myrmecotonus ) and C. (Anatrinodia ) are synonymized with the subgenus C. (Cremastocheilus ). Even though behavioral information is only known for a few species, the resulting phylogeny indicates that monophyletic subgenera are largely associated with the same ant hosts, although specific interactions with ant hosts can vary even in closely-related taxa. -
Butterflies of Hungary
Butterflies of Hungary Naturetrek Tour Report 18 - 25 June 2013 Beautiful Demoiselle by Gerard Gorman Lesser Purple Emperors attracted to Wolf Scat. – by Gerard Gorman Yellow-legged Tortoiseshell by Jon King Woodland Brown by David Alred Report compiled by Rob Parker Images courtesy of Gerard Gorman, Jon King and David Alred Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report Butterflies of Hungary Tour Leader: Rob Parker Naturetrek Lepidopterist Gerard Gorman Local Guide & Tour Manager Participants: Kay Adamson David Alred Joan Alred Bill Furse John Helps Gwen Holyman Jon King Peter Westgate Judy Westgate Michael Wheeler Ray Witt Day 1 Tuesday 18th June In Transit Weather: Fine At Budapest Airport, recently re-named for Liszt, we were joined by Kay and met by our local guide Gerard. Our cheerful and experienced driver, Istvan loaded our luggage and we were soon on our way. Readers should note that we executed the tour in the reverse direction to previous years. We made a brief stop at a motorway service area on the M3 near the village of Ludas. Here, we met a little moth that we were to see everywhere for the rest of the week; the Nine-spotted, Syntomis phegea. We continued our journey to the Bukk Hills, just beyond Eger in north-east Hungary, finishing at the uphill end of Noszvaj, where the Hotel Nomad nestles in a tranquil wooded bowl. We arrived with time to explore the extensive grounds of the hotel and the adjacent lakeside before dinner. -
Tarnava Mare 2015 Biodiversity Survey Summary Report
Tarnava Mare 2015 Biodiversity Survey Summary Report Report editor: Dr Bruce Carlisle – Geography & Environment, Northumbria University. Science team: Stephen Brennan, Silvia Cojocaru, Chloe Dalglish, Paul Leafe, Chris Ledbury, Olivia Norfolk, James O’Neill, Huma Pearce, Helen Rawlinson, Warwick Wainwright. Assisted by: Georgina Scott, Serban Tudor, Marcela Mann, Dragos Luntraru, Alin-Marius Nicula, Mihaela Hojbota, Andrei Nicoara, Bogdan Ciortan. With thanks to all the staff at Fundatia ADEPT, Cristi Malos – Babes-Bolyai University, all the dissertation students and volunteers. Contents 1.0 Introduction....................................................................................................................................... 2 2.0 Methods ............................................................................................................................................ 3 2.1 Farmer interviews ......................................................................................................................... 4 2.2 Land cover ..................................................................................................................................... 4 2.3 Grassland plants ............................................................................................................................ 4 2.4 Grassland butterflies ..................................................................................................................... 5 2.5 Birds ..............................................................................................................................................