Viewed Papers: Yin K, Baillie GJ and Vetter I

Total Page:16

File Type:pdf, Size:1020Kb

Viewed Papers: Yin K, Baillie GJ and Vetter I A Pharmacological and Transcriptomic approach to exploring Novel Pain Targets Kathleen Yin Bachelor of Pharmacy A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 Institute for Molecular Bioscience i Abstract Ever since the discovery that mutations in the voltage-gated sodium channel 1.7 protein are responsible for human congenital insensitivity to pain, the voltage-gated sodium channel (NaV) family of ion channels has been the subject of intense research with the hope of discovering novel analgesics. We now know that NaV1.7 deletion in select neuronal populations yield different phenotypes, with the deletion of NaV1.7 in all sensory neurons being successful at abolishing mechanical and heat-induced pain. However, it is rapidly becoming apparent that a number of pain syndromes are not modulated by NaV1.7 at all, such as oxaliplatin-mediated neuropathy. It is particularly interesting to note that the loss of NaV1.7 function is also associated with the selective inhibition of pain mediated by specific stimuli, such as that observed in burn-induced pain where NaV1.7 gene knockout abolished thermal allodynia but did not affect mechanical allodynia. Accordingly, significant interests exist in delineating the contribution of other NaV isoforms in modality-specific pain pathways. Two other isoforms, NaV1.6 and NaV1.8, are now specifically implicated in some NaV1.7-independent conditions such as oxaliplatin-induced cold allodynia. Such selective contributions of specific ion channel isoforms to pain highlight the need to discover other putative protein targets involved in mediating nociception. The aim of my work is therefore to discover selective molecular inhibitors of NaV1.6 and NaV1.8, to find useful cell models for peripheral nociceptors, to investigate the roles of NaV1.6 and NaV1.8 in an animal model of burn-induced pain, and to screen for putative new targets for analgesia in burn-related pain. Chapter 2 of this thesis describes activity-guided discovery of novel NaV1.6 and NaV1.8- modulting peptides from crude spider venoms. Crude venom from Poecilotheria metallica successfully reduced NaV1.8-mediated voltage changes in HEK293-expressing cells. A new NaV1.8-inhibitory peptide was sequenced from the venom and named Pme1a. However, Pme1a exhibited TRPV1 agonist activity and induced nocifensive behaviours, such as paw licking, after injection into the hind paws of mice, indicating the peptide was not a selective NaV1.8 modulator and was unsuitable as a tool for NaV1.8 investigation. ii With the unsuccessful exploration of spider venoms for new specific inhibitors, I then investigated in vitro cell models as tools to research specific nociceptor subtypes that express NaV1.6 or NaV1.8. In Chapter 3, I provide the first complete transcriptome of three common in vitro neuronal cell lines (SH-SY5Y, F-11, and ND7/23) to examine whether they were appropriate for investigating the functions of NaV1.6 and NaV1.8, and to identify if the cell lines resemble in vivo dorsal root ganglion (DRG) neuronal subclasses. The three cell lines examined all expressed proteins belonging to similar pathways and of similar proportions to native DRG neurons. However, they did not express any cellular markers in a fashion that represented any known subclasses of DRG neurons. Therefore, it is unlikely that any of the cell lines examined are appropriate models for NaV1.6 or NaV1.8 function, and highlights the need for careful selection of models in in vitro work. As investigations for selective NaV1.6 and NaV1.8 modulators and appropriate in vitro cell models both proved to be unsuccessful, I then turned to animal models to study modality- specific contributions of NaV isoforms. Chapter 4 describes the establishment of a murine model of peripheral burn injury to assess the involvement of NaV1.6 and NaV1.8 in burn- induced pain. The inhibition of NaV1.6 and no other NaV isoforms significantly reduced burn- induced mechanical allodynia, a NaV1.7-independent pain modality, indicating NaV1.6 plays a vital role in this NaV1.7-independent condition. However, immunofluorescence studies revealed NaV1.6 expression was not changed in the affected DRGs. I therefore decided to conduct a transcriptomic investigation to examine whether the expression of other pain- related ion channel gene were changed, and to discover if genes differentially expressed in the affected DRG neurons could be potential pharmacological targets for analgesia. The results of the transcriptomic investigation of DRGs affected by the burn model are discussed in Chapter 5. A total of 30 genes were found to be differentially expressed, including genes known to be involved in nociception (such as neuropeptide Y) as well as genes with no known association to nociception (such as lipase, family member N). It should be noted that none of the NaV isoforms were differentially expressed, indicating that NaV channels may alter pain sensitivity through modulated function rather than expression. Selective inhibitors of the protein products of the genes found to be up-regulated were then tested in the burn-induced pain mouse model. Proglumide, an inhibitor of the cholecystokinin B receptor, exhibited a significant anti-allodynic effect in burn-induced mechanical allodynia and was synergistic with oxycodone. Some genes found to be differentially expressed in burn iii injury were also identified in the cell lines covered in Chapter 3, and the cell lines can potentially be used as in vitro models to rapidly profile the effects of inhibitors of these proteins in peripheral neurons. iv Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. v Publications during candidature Peer-reviewed papers: Yin K, Baillie GJ and Vetter I. Neuronal cell lines as model dorsal root ganglion neurons: A transcriptomic comparison. Mol Pain. 2016; 12: 1-17. Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol. 2015;93(2):125-40. Conference abstracts: Yin K, Deuis JR, Vetter I. A Behavioural and Transcriptomic Assessment of a Mouse Burns Model. Oral Presentation. IMB Chemistry and Structural Biology Division Symposium, November 2015, Brisbane, Australia. Yin K, Deuis JR, Vetter I. Development and optimisation of a murine model of burn injury- induced pain. Oral presentation. Australian Pain Society 35th Annual Scientific Meeting, March 2015, Brisbane, Australia. Yin K, Baillie G, Vetter I. Evaluating the molecular expression profiles of common cell lines used as DRG neuron models. Poster presentation. Venoms to Drugs conference, November 2014, Kingscliff, New South Wales, Australia Yin K, Vetter I, Herzig V, Cardoso F, Cabot PJ, Lewis RJ. Discovery and characterisation of a peptide with inhibitory activity at NaV1.8 from the spider P. metallica. Poster presentation. IMB division retreat, March 2014, Brisbane, Queensland, Australia. Publications included in this thesis No publications included. vi Contributions by others to the thesis The thesis is a collection of work primarily conducted by me, with contribution from many other co-workers and collaborators as detailed below. My supervisors, Dr. Irina Vetter, Associate Professor Peter Cabot, and Dr. Fernanda Caldas Cardoso have contributed significantly to the conception and design of many experiments. All crude venoms examined in Chapter 2 were generously provided by Dr. Volker Herzog from the Institute for Molecular Bioscience, and I would like to extend my thanks to Dr. Aihua Jin and Dr. Mu Yu for their provided invaluable support in conducting MS/MS experiments and finalising the sequence of the peptides. Dr. Gregory J. Baillie from the Institute for Molecular Bioscience contributed significantly to bioinformatics data analysis for Chapter 3 and Chapter 5, particularly with gene alignment and mapping. NaV inhibitory peptides used in Chapter 4 were synthesised by Mr. Zoltan Dekan from the Institute for Molecular Bioscience. Dr. Jennifer R. Deuis from the Institute for Molecular Bioscience contributed significantly to mechanical and thermal allodynia measurements in mice for Chapter 4 and Chapter 5, and towards the motor assessment of mice (Figures 4.3 and 5.5). Ms Mathilde Israel and Mr. Bryan Tay also contributed significantly to the fluorescence imaging data present in Figures 4.5 and 4.6, assisting with microscope operation and optimisation. Statement of parts of the thesis submitted to qualify for the award of another degree None vii Acknowledgements First of all, I would like to thank my supervisors for their incessant support during my candidature.
Recommended publications
  • SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
    SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the
    [Show full text]
  • A Rare Missense Mutation in GJB3 (Cx31g45e) Is Associated with a Unique Cellular Phenotype Resulting in Necrotic Cell Death Easton, J
    University of Dundee A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death Easton, J. A.; Alboulshi, A. K.; Kamps, M. A. F.; Brouns, G. H.; Broers, M. R.; Coull, B. J.; Oji, V.; van Geel, M.; van Steensel, M. A. M.; Martin, P. E. Published in: Experimental Dermatology DOI: 10.1111/exd.13542 Publication date: 2018 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Easton, J. A., Alboulshi, A. K., Kamps, M. A. F., Brouns, G. H., Broers, M. R., Coull, B. J., ... Martin, P. E. (2018). A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Experimental Dermatology. https://doi.org/10.1111/exd.13542 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • CLCN5 Gene Chloride Voltage-Gated Channel 5
    CLCN5 gene chloride voltage-gated channel 5 Normal Function The CLCN5 gene provides instructions for making a protein called ClC-5 that transports charged atoms (ions) across cell membranes. Specifically, ClC-5 exchanges negatively charged atoms of chlorine (chloride ions) for positively charged atoms of hydrogen ( protons or hydrogen ions). Based on this function, ClC-5 is known as a H+/Cl- exchanger. ClC-5 is found primarily in the kidneys, particularly in structures called proximal tubules. These structures help to reabsorb nutrients, water, and other materials that have been filtered from the bloodstream. The kidneys reabsorb needed materials into the blood and excrete everything else into the urine. Within proximal tubule cells, ClC-5 is embedded in specialized compartments called endosomes. Endosomes are formed at the cell surface to carry proteins and other molecules to their destinations within the cell. ClC-5 transports hydrogen ions into endosomes and chloride ions out, which helps these compartments maintain the proper acidity level (pH). Endosomal pH levels must be tightly regulated for proximal tubule cells to function properly. Health Conditions Related to Genetic Changes Dent disease About 150 mutations in the CLCN5 gene have been found to cause Dent disease 1, a chronic kidney disorder that can cause kidney failure. Most of the mutations lead to the production of an abnormally short, nonfunctional version of ClC-5 or prevent cells from producing any of this protein. A loss of ClC-5 alters the regulation of endosomal pH, which disrupts the overall function of proximal tubule cells and prevents them from reabsorbing proteins and other materials into the bloodstream.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Nrf2 Modulates Host Defense During Streptococcus Pneumoniae Pneumonia in Mice
    Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice This information is current as John C. Gomez, Hong Dang, Jessica R. Martin and Claire of September 28, 2021. M. Doerschuk J Immunol published online 26 August 2016 http://www.jimmunol.org/content/early/2016/08/26/jimmun ol.1600043 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/08/26/jimmunol.160004 Material 3.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 26, 2016, doi:10.4049/jimmunol.1600043 The Journal of Immunology Nrf2 Modulates Host Defense during Streptococcus pneumoniae Pneumonia in Mice John C. Gomez,*,† Hong Dang,†,‡ Jessica R. Martin,*,† and Claire M. Doerschuk*,†,x Nrf2 regulates the transcriptional response to oxidative stress. These studies tested the role of Nrf2 during Streptococcus pneumoniae pneumonia and identified Nrf2-dependent genes and pathways in lung tissue and in recruited neutrophils.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Hereditary Kidney Disorders
    A. Stavljenić-Rukavina Hereditary kidney disorders How to Cite this article: Hereditary Kidney Disorders- eJIFCC 20/01 2009 http://www.ifcc.org 5. HEREDITARY KIDNEY DISORDERS Ana Stavljenić-Rukavina 5.1 Introduction Hereditary kidney disorders represent significant risk for the development of end stage renal desease (ESRD). Most of them are recognized in childhood, or prenataly particularly those phenotypicaly expressed as anomalies on ultrasound examination (US) during pregnancy. They represent almost 50% of all fetal malformations detected by US (1). Furthermore many of urinary tract malformations are associated with renal dysplasia which leeds to renal failure. Recent advances in molecular genetics have made a great impact on better understanding of underlying molecular mechanisms in different kidney and urinary tract disorders found in childhood or adults. Even some of clinical syndromes were not recognized earlier as genetic one. In monogenic kidney diseases gene mutations have been identified for Alport syndrome and thin basement membrane disease, autosomal dominant polycystic kidney disease, and tubular transporter disorders. There is evident progress in studies of polygenic renal disorders as glomerulopathies and diabetic nephropathy. The expanded knowledge on renal physiology and pathophysiology by analyzing the phenotypes caused by defected genes might gain to earlier diagnosis and provide new diagnostic and prognostic tool. The global increasing number of patients with ESRD urges the identification of molecular pathways involved in renal pathophysiology in order to serve as targets for either prevention or intervention. Molecular genetics nowadays possess significant tools that can be used to identify genes involved in renal disease including gene expression arrays, linkage analysis and association studies.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]