<<

1992ApJ. . .384. .508R intended toestablishthefirst consistentsetofglobalabun- Paper II),wereportedtheresults ofaprogramobservations (H iiregions,supernovaremnants[SNRs],andplanetary close enoughfortheirpopulationofgaseousemissionobjects from thefactthattheymaybeviewedintheirentiretywith stand asgalacticsystemsthanourownGalaxy.Thisresults The AstrophysicalJournal,384:508-522,1992January10 (1989, hereafterPaperI)and Russell &Dopita(1990,hereafter is beingseverelydisruptedby the gravitationalinteractionwith well mixedbygasmotionsalongtheircentralbars(seePagel et generation ofsensitivedetectors,thecompletepopulations of nebulae) tobestudiedingreatdetail,and,withthepresent nally, andtheirdistancesarewellestablished.Also,they very littledustobscuration,eitherfromtheGalaxyorinter- the (seeMathewson& Ford1984),anda“bridge”of quite complex,sinceweobservethematatimewhentheSMC Dynamically, however,itmustberemembered,theClouds are should reflecttheglobalabundancesofwholeCloud. al. 1978),sothatanabundanceanalysisatanyonepoint they havenowell-definedhaloordisk,andarerelatively supergiants ineachCloudareaccessiblefordetailedanalysis. H igasisobservedtoconnect thetwoClouds. Finally, theyappeartobesomewhatsimplersystems,in that © 1992.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. The MagellanicCloudsareinmanywayseasiertounder- In ourtwopreviouspapersin thisseries,Russell&Bessell modal starformationandgasinfall.Themodelsarediscussedinrelationtotheobservedchemicalabun- mean metallicity0.2dexlowerthanthelocalGalacticISM,andofSMCis0.6lower. work areinvestigatedforanyobvioustrendswithmetallicityordifferencescomparedtheGalaxy.Con- dances oftheCloudsandarecomparedwithourownGalaxy.Thedetailedabundancesderivedfromprevious elemental ratios.Thisismostevidentwhenconsideringthelightestandheaviestofelements.The material thathasfalleninfromfartherout. Clouds thanintheGalaxy.Ther-process,onotherhand,appearstohavebeenmoreeffective. s-process appearstohavebeenlesseffectiveatformingtheheavyneutron-captureelementsinMagellanic However, theinterstellarmediaofbothMagellanicCloudsandGalaxyhavesignificantlynonsolar and theimplicationsforourownGalaxy. sidering allthedata,conclusionsaredrawnonpossiblestarformationhistoriesofMagellanicClouds abundances arecomparedwiththelocalISM,andsuggeststhatpresentISMinvicinityofSunis abundances, relativetotheSun,asatomicnumberdecreases.Thisisseennotbecasewhen alously low.TheoveralldistributionofthelightestelementsinCloudsshowsagradualfallingoff abundance, whichisincontrasttothecarbonabundancesHnregions,appearbeanom- Subject headings:Galaxy:abundances—ISM:MagellanicClouds This paperpresentschemicalandstructuralevolutionarymodelsfortheMagellanicCloudsassumingbi- The followingconclusionswerereachedinthiswork.interstellarmedium(ISM)oftheLMChasa Of thelightelements,carbonappearstobeofnormalabundanceinCloudstarsrelativeiron © American Astronomical Society • Provided by the NASA Astrophysics Data System ABUNDANCES OFTHEHEAVYELEMENTSINMAGELLANICCLOUDS. Mount StromloandSidingSpringObservatories,InstituteofAdvancedStudies,TheAustralianNationalUniversity, 1. INTRODUCTION Dublin InstituteforAdvancedStudies,SchoolofCosmicPhysics,5MerrionSquare,2,Ireland nuclear reactions,nucleosynthesis,abundances Private Bag,WestonCreekP.O.,Canberra,ACT2611,Australia III. INTERPRETATIONOFRESULTS Received 1990June4;accepted1991July19 Stephen C.Russell Michael A.Dopita ABSTRACT AND 508 compare themwiththemodels describedin§3andwith enrichment ineachoftheClouds. In§4wediscusstheelemen- explore thestarformationhistories andassociatedelemental from thatoftheSun.In§3we describethemodelsweuseto tal abundancepatternswe have foundintheCloudsand evolutionary historiesofeachtheCloudsandwithsolar consistent overthewholerangeofatomicmass. were usedtoprovideanoverlapbetweentheotherwisedispa- abundance patternsoftheClouds anddiscusshowtheydiffer neighborhood ofourGalaxy.In§2wedescribetheoverall vious twopapersintermsofthestarformationhistories the abundances wederivedfromallsources,foreachCloud,were regions. Inthiswaywewereabletoensurethatthesets of rate setsofabundancesderivedfromsupergiantsand H n Dopita, &Tuohy1985;EvansDopita1985).TheSNRs the general-purposemodelingcodeMAPPINGS(seeBinette, low-luminosity FsupergiantsinbothMagellanicClouds. analyses ofhigh-dispersionspectrasamplesmedium-to the verylightest(He,C,N,O)uptosomeofheaviest(Nd, dances forbothClouds,coveringtherangeofelementsfrom samples ofbrightHnregionsandSNRsinbothClouds,using Magellanic Clouds,andtherelationshipsbetweenchemical Paper IIdescribedouranalysisoftheemissionspectra Sm) observable.PaperIdealtwiththedetailedabundance In thispaperweattempttointerprettheresultsofpre- 1992ApJ. . .384. .508R be doneinthisrelativelynewfieldofresearch. ings andmakesuggestionsforsomeoftheworkthatneedsto results fromtheGalaxy.Finally,in§5wesummarizeourfind- have chosenasrepresentativeoftheMagellanicClouds,when elements comefromtheworkonGalacticHnregionsby elements heavierthanZ=18andthelighterC,Na, local interstellarmedium(ISM)relativetotheSun,where Cameron (1982b)(exceptwherementioned),onascaleof Column (3)givestheabundancesbynumberforSunfrom the literatureaswellfromourownwork(PapersIandII). due considerationhasbeengiventoallsourcesofdata,from discussion). Columns(5)and(7)givetheabsoluteabundances studied supergiant,ofthesametypeasMagellanicCloud population ofthepresent-dayISM,sinceitisayoung,well- studiedinPaperI(seeforamoredetailed Boyarchuk (1982)inpreference,andotherwisefromDesika- Shaver etal.(1983).Canopuswaschosentorepresentstellar chary &Hearnshaw(1982)orthemorerecentpaperbyReyn- Mg, Al,andSiareallderivedfromCanopus(Lyubimkov& olds, Hearnshaw,&Cottrell(1988),whiletheremaining 12 +logiV(M/H).Incolumn(4)wegivetheabundancesof In Table1wesummarizetheoverallabundanceswhich 2. THEOVERALLABUNDANCEPATTERN © American Astronomical Society • Provided by the NASA Astrophysics Data System comparison betweensolarandextrasolar abundancesisnotmeaningfulinthiscase. N .. Al.. Na . Ne . O .. C .. Ti .. Ca . Ar . Cl.. He . Nd. Zr.. Zn . Cu . Ni . Cr . V .. Sc.. S ... Si .. Mg Ce . Y .. Sr .. Fe . Mn Eu . Sm . La . Ba . a d c b TakenfromAnders&Grevesse1989. TakenfromBlackwell, Shallis,&Simmons1982. TakenfromSpiteetal.1989b. Thederivationofthisvaluedepends, atleastpartially,onextrasolarsources(e.g.,Hnregionsandhot stars). Therefore,a Element (1) ABUNDANCES OFHEAVYELEMENTSINMAGELLANICCLOUDS.HI. (2) 40 26 24 23 22 21 20 29 28 25 63 62 60 39 38 30 58 57 56 18 17 16 14 13 12 11 10 Z 2 7 6 8 ab b b d 10.99, 4.68 4.31 6.50 7.60 6.35 7.99 8.84 7.94 8.62 0.55 0.96 6.37 6.60 7.27 7.58 2.26 2.65 2.26 2.93 6.25 7.53 5.68 3.98 5.08 3.07 5.25 5.54 1.47 1.65 1.14 Sun (3) Solar Vicinity minus Sun c -0.03 -0.09 -0.14 -0.37 -0.29 -0.10 -0.10 -0.22 -0.25 -0.18 -0.09 -0.21 -0.11 -0.06 -0.05 -0.15 -0.08 -0.15 -0.01 -0.18 -0.11 -0.14 — 0.13 -0.14 c 0.05 0.20 0.23 0.01 (4) 0.11 0.00 0.00 Adopted Abundances 10.94 LMC 4.76 4.08 4.81 0.93 4.28 2.64 6.29 6.70 7.81: 7.47 7.15: 7.61 8.35 7.14 8.04 2.03 2.26 2.47 6.04 7.23 5.89 5.21 5.47 1.68 1.52 1.07 1.93 (5) TABLE 1 u LMC column (4).Theselatterabundancesshouldbelessaffectedby dances areincludedintheadjacentcolumnsforeachCloud. the Sun,whileerrorsdeducedfromscatterinabun- and SMC,respectively,relativetothelocalISMasgivenin from theFsupergiantsstudiedinPaperI,supplementedby heavy-element abundancesincolumns(5),(7),(9),and(10),for given incolumns(5)and(7),sincewecomparelikeobjects.The systematic errorsintheanalysesthanabsoluteabundances Finally, thelasttwocolumnsgiveabundancesofLMC of theLMCandSMC,respectively,onsamescaleasfor The otherelementsarederivedfromourworkonHnregions Z >18,andtheelementsC,Na,Mg,Al,Si,arederived abundances ofthethreeSMCsupergiantsanalyzedbySpite, 0.08 0.09 0.13 0.05 0.06 0.15 0.18 0.03 ISM, respectively(asgiveninTable1).Similarly,Figures2a previous abundanceestimatesgivenintheliterature. abundances derivedinthereviewbyDufour(1984)fromall and SNRs(PaperII),withdueconsiderationgiventothe 0.58 0.10 0.09 0.14 0.21 0.09 0.16 0.07 0.21 0.16 0.25 (1982) andDufour,Schiffer,&Shields(1984);theopencircles triangle representsthevalueforcarbonderivedfromUV and 2bweplottheresultsforSMC.Ineachcasefilled LMC abundancesrelativetotheSunandlocalGalactic Spite, &François(1989)andBarbuy,Spite(1989a). 0.18 0.19 0.09 0.09 0.24 0.17 0.10 observations ofHnregionsbyDufour,Shields,&Talbot represent elementswithinsufficientinformationforusto (6) In FigureslaandIhweplotagainstatomicnumberthe 10.91 SMC 4.49 4.70 0.28 0.85 2.33 6.59 7.03 6.40: 6.98 7.27 8.03 6.63 7.73 6.84 5.10 3.54 5.69 5.81 5.96 3.73: 5.85 5.03 1.08 1.49 1.33 1.32 1.99 1.65 1.33 (7) 0.13 0.20 0.27 0.15 0.15 0.20 0.08 0.20 0.15 0.18 0.12 0.24 0.20 0.10 0.20 0.13 0.05 0.08 0.39 0.12 0.27 0.29 0.48 0.22 0.23 0.20 0.31 (8) SMC Solar Vicinity LMC minus -0.13 -0.40 -0.36 -0.10 -0.29 -0.35 -0.43 -0.29 -0.06 -0.07 -0.02 -0.23 -0.24 -0.25 -0.31 -0.39 -0.19 -0.19 -0.10 -0.17 -0.21 -0.23 -0.21 0.18: 0.57: (9) 0.11 0.10 0.20 Solar Vicinity SMC minus -0.59 -0.62 -0.67 -0.94 -0.60 -0.09 -0.24 -0.94 -0.51 -0.53 -1.45: -0.40: -0.41 -0.58 -0.37 -0.47 -0.34 -0.49 -0.52 -0.43 -0.61 -0.46 -0.47 -0.60 -0.30: -0.63 -0.09 -0.14 -0.26 (10) 0.26 509 1992ApJ. . .384. .508R 5 (1982) andDufour,Schiffer,&Shields(1984),theopencirclesareelements filled triangleistheCabundancederivedfromDufour,Shields,&Talbot Sun. ThedashedlinerepresentstheapproximatemetallicityofCloud. !" '°- behave alittle likeanaccretiondisk,itis possiblethatthe low comparedwiththoseoftheheavierelements. is leadingly low,itisclearthattherelativeabundancesof the in ourpresentunderstandingofitsformation,ispossibly mis- garding theNabundance,which,consideringuncertainties appears tobeapronouncedunderabundancerelative the define [M/H]*=logiV(M/H)-. case forthepresent-daylocal ISM. SincetheGalacticdiskmay cloud inwhichmorelightelements wereproducedthaninthe the criticalelementsinbothCloudsshowentirelynormalrela- plotted relativetothelocalISM(Figs,lband2b).Allthree of This trend,however,disappearswhentheabundances are not includedinthistrendbecauseofitslargelycosmicorigin. three well-observedelementsC,O,andNeareanomalously that theabundancesarerelativetolocalISMratherthanSun,sowe with insufficientdataforanerrorbartobeestimated,{b)Sameas(a),except the vicinityofSunthan to thatoftheSunitself(seealso similar tothestarformation history ofthepresent-dayISMin formationhistoriesofthe MagellanicCloudsaremore tive abundances.Thisrepresentssignificantevidencethat the Sun fortheverylightestelements(Figs,laand2a).Disre- imate Feabundance. assign anerrorbar;andthedashedlinerepresentsapprox- 510 Peimbert 1987). 10objectISM Fig. 1.—(a)AdopteddistributionofabundancesintheLMCrelativeto As notedinPaperI,andshownevenmoreclearlyhere,there The implicationofthisresult isthattheSunwasbornina -1.0 -1.5 -2.0 0.0 0.5 1.0 0 5101520253035404550556065 © American Astronomical Society • Provided by the NASA Astrophysics Data System Fig. la Fig. lb z RUSSELL &DOPITA farther out,wherethestarformationhasnotbeensointense, fallen moretowardthecenterofGalaxy,whilecloudsfrom would representnewevidencefortherealityofradialinflow. gaseous materialfromwhichtheSunwasformedhassince clouds, isthemostlikelydrivingforce.Sincestellardisk is diffusion, throughgravitationalscatteringbygiantmolecular detail byDopita(1990).Itwouldappearthatstellarorbital have fallenintothepresentvicinityofSun.Ifcorrect,this (Z >56)withincreasingatomic number.Thiswillbediscussed energy. TheflatGalacticrotationcurveimpliesthattheinflow is energy-conserving,thegaseouscomponentmustbelosing being heatedataconstantrate,andthecloud-starinteraction radial inflowofgasinourGalaxyhavebeendiscussedsome in alatersection. dances isthepronouncedincreaseinveryheavymetals the gaslayerswhichcausesthemtoshedorbitalenergy and tion, wherebyasymmetricdriftoftheoldstarsputsatorque on and thegas.Thisprocessisessentiallyoneofdynamical fric- rate isproportionaltotherelativesurfacedensitiesofstars and theLMC and comparetheresultswith themodelfor spiral towardsthecenter. the SMC. The mechanismsthatcouldberesponsiblefordrivingthe The othermajorfeatureoftheplotsoverallabun- We presentherepossibleevolutionary modelsfortheSMC Fig. 2.—(a)Sameasla,butfortheSMC.(b)lb, 3. STARFORMATIONMODELS 3.1. TheStructuralEvolution Fig. 2a Fig. 2b Vol. 384 1992ApJ. . .384. .508R 9 9 -2 mines thechemicalenrichmentofISM,whilelow-mass (IMF) (thenumberofstarsbornpersquarekiloparsecyear quence ofthisisabimodalformtheinitialmassfunction star formationappliesbelow1Mandservesonlytolockup high-mass starformationappliesabove~1Manddeter- per [log(M/M)]),similartothoseproposedbyGüsten& takes placeintwoquiteseparateenvironments.Theconse- models areconstrainedbytheobservationsofratio into account,butradialflowsarenot.Theendpointsforthe formation rate,andtheoxygen-to-ironabundanceratio.The gas masstothetotalmass,ageofsystem,star chemical yieldswithmetallicityforthemassivestarsistaken formation duringthefollowingtimestep.Thevariationof processed andunprocessedgasfromeachstellarmass.Any form ofwhitedwarfsorneutronstars;andtheenrichment Mezger (1983),Larson(1986),andWyse&Silk(1989).The have chosenspecificallytofitwithourmodels. parameters listedinboldfacetyperepresentsthosethatwe the modelresultsforGalaxyfromDopita(1990).The derived modelparametersaregiveninTable2,aswellthe ejected matterisassumedtobemadeavailableforfurtherstar dilution oftheISMthatoccursthroughejectionboth return totheISM,andremnantstheyleavebehindin (the modelsbeinginsensitivetotheexactmasslimits); within each0.03logmassbin,overaspecifiedrangeofmasses observationally determinedparametersfromtheliteratureand number ofstarsineachmassbinthatdieandthegasthey amount ofinfallengas;thenumberstarsthatareformed Greggio (1986).Thecodecalculates,ateachtimestep,thetotal described byMatteucci&Tornambè(1985)and for thechemicalevolutionarypropertiesofexternalgalaxies. which canaccountforthechemicalevolutionarypropertiesof the localenvironmentshouldbeequallycapableofaccounting there isnoreasontosupposethatthesolarneighborhoodin any waypeculiarinitsproperties,wemighthopethatamodel Galaxy derivedbyDopita(1990)usingthesamecode.Since No. 2,1992 0 0 0 Total massofsystem(10M) Total gasmass(10M) Total masssurfacedensity(Mpc) Distance tosystem(kpc) IMF exponentp Gas depletiontimescale(Gyr) Ratio ofgasmasstototal iV(He/H) Lifetime ofbinaries,i(Gyr) Low-to high-massSFRratio Peak ofstarformation(Gyrfrompresent) Gas infalltimescale(Gyr) Evolution time(Gyr) Radius ofsystem(kpc) [C/H] [N/H] % ofstarsformingbinaries IFe/H] lO/H] 0 0 0 den In thesemodels,weassumeineffectthatstarformation To thisend,amodelingcodewasdevelopedalongthelines Note.—The fittedparametersaregiven inboldtype. © American Astronomical Society • Provided by the NASA Astrophysics Data System Parameter ABUNDANCES OFHEAVYELEMENTSINMAGELLANICCLOUDS.III. (Dopita 1989)LiteratureModel Galaxy 400.0 28.0 70.0 12.9 14.8 12.5 0.29 0.10 0.22 0.30 0.11 4.0 0.07 2.0 3.5 1.0 1.8 1.0 Physical Parameters TABLE 2 -0.65 -0.77 -0.86 2.0-4.0 -1.31 1.7-6.0 70.0 50.0 10.0 0.081 0.65 0.36 2.14 3.1 1.8 the cold-coremolecularclouds,formingstarsatasteadyrate being formedandthatthelow-masscutoffinIMFisof where severalanalysessuggestthatonlyhigh-massstarsare for thismodeofstarformationcomesfromstarburstgalaxies, mechanism forthecloudsandcompressionnecessaryto cloud-cloud collisionsorcoalescencesprovideaheating The associationofthesecloudswithspiralarmssuggeststhat Good 1989). core (~5-15K)cloudsaredistributedsmoothlythroughout molecular cloudsmapouttheGalacticstar-formingregions, (1990). determined bygravitationalfragmentation,andtherepres- star formationinmaturegalaxiesisbelievedtotakeplace shown, forinstance,inthemodelsofDopita1990),bulk very earlieststagesofdevelopmentanormalgalaxy(as trigger massivestarformationwithinthem.Furtherevidence tion dependsstronglyonthegastemperature(Larson1985). the Galaxy(Scoville,Sanders,&Clemens1986;Scoville trace thespiralstructureofGalaxy(Güsten&Mezger peratures. Thewarm-core(~100K)giantmolecularclouds divided intotwopopulationswhichreflecttheirkinetictem- then theirdistributionoffersstrongsupportforstarformation is derivedfromseveralphysicalarguments.IfCO-emitting have retainedthevalueof4.0derivedforGalaxybyDopita Franco &Cox1983).Supportforthisscenariocomesfromthe M) starsastheyform(Norman&Silk1980;Franco1983; surization oftheISMbyTTauriwindsfromlow-mass(<1 Ekman 1984;Augarde&Lequeux1985). order 3M(Riekeetal.1980,1985;Olofsson,Bergvall,& stars formpreferentially,sincethecriticalmassforfragmenta- occurring attwoquitedifferentsites.TheCOcloudsareclearly tionary modelsarerelativelyinsensitivetothisparameter,we tion isdetailedasafreeparameter;however,sincetheevolu- gas inlong-livedstars.Theratioofthetworatesstarforma- 1983) andareassociatedwithHnregions,whereasthecold- 0 0 SMC Although high-massstarformationmaydominateinthe The logicinfavorofadoptingabimodalstarformationrate In thewarm-corecloudsitisbelievedthathighermass -0.64 -0.76 -0.83 -0.62 50.0 0.082 4.0 3.6 0.36 2.9 2.32 2.5 8.0 3.0 1.5 130.0 -0.30 0.6-1.5 -0.44 -0.80 -0.58 4.0-7.0 52.0 10.0 0.089 0.70 0.11 6.1 2.29 3.8 LMC 130.0 -0.30 -0.44 -0.24 -0.32 0.091 4.0 5.1 0.11 2.0 2.20 3.0 8.0 1.1 1.85 This work This work This work This work This work Dopita 1987andreferencestherein Model Dopita 1987andreferencestherein Derived Derived Lequeux 1984 Lequeux 1984 Humphreys &McElroy1984 Model Model Frantsman 1988 Lequeux 1984 Mathewson &Ford1984 Model Reference 511 1992ApJ. . .384. .508R s -2 1/2 2 1 mass slopeoftheIMFisfairlywelldeterminedbyobservation collapse timescaleofthegalaxy.Thisscale,%,isgiven by low intheClouds(seeIsrael1984forafulldiscussion). probably lowerbounds,sincethereisanunknowndegree of from Lequeux1979,1984)andTisthegasinfalltimescale. where Misthetotalsurfacemassofsystem(determined to lieintherange1.5