Diverzita Parazitických Korýšů U Cichlid Jezera Tanganika

Total Page:16

File Type:pdf, Size:1020Kb

Diverzita Parazitických Korýšů U Cichlid Jezera Tanganika MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE DIVERZITA PARAZITICKÝCH KORÝŠŮ U CICHLID JEZERA TANGANIKA Diplomová práce Bc. Robert Míč Vedoucí práce: Mgr. Mária Seifertová, Ph.D. Brno 2020 Bibliografický záznam Autor: Bc. Robert Míč Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Diverzita parazitických korýšů u cichlid jezera Název práce: Tanganika Studijní program: Ekologická a evoluční biologie Studijní obor: Ekologická a evoluční biologie Vedoucí práce: Mgr. Mária Seifertová, Ph.D. Akademický rok: 2019/2020 Počet stran: 110 Klíčová slova: parazitičtí korýši; Afrika; Tanganika; cichlidy; diverzita Bibliographic Entry Author Bc. Robert Míč Faculty of Science, Masaryk University Department of Botany and Zoology Diversity of parasitic crustaceans of cichlid fishes from Title of Thesis: the Lake Tanganyika Degree programme: Ecological and Evolutionary Biology Field of Study: Ecological and Evolutionary Biology Supervisor: Mgr. Mária Seifertová, Ph.D. Academic Year: 2019/2020 Number of Pages: 110 Keywords: parasitic crustaceans; Africa; Tanganyika; cichlids; diversity Abstrakt Parazitičtí korýši napadají rybí společenstva prakticky po celém světě. Tato diplomová práce se zaměřuje na africké jezero Tanganika a cichlidovité ryby jako hostitele. První část představuje základní informace o jezeře a cichlidách, následují dostupné poznatky o parazitických korýších z tříd Copepoda, Branchiura a řádu Isopoda. Vše je doplněné o přehledné seznamy jejich hostitelů a referencí. Praktická část vyhodnocuje diverzitu parazitických korýšů, kteří byli nasbírání na cichlidách v rámci expedice oddělení Parazitologie (Masarykova univerzita, Brno) k jezeru Tanganika, na území Burundi v roce 2013. Vyšetřeno bylo 170 cichlid, jež náleží do 23 různých druhů a 11 tribů, a které se liší v několika dalších faktorech (potravní chování, habitat, lokalita výskytu atd.). Nalezeno bylo celkově 1265 parazitů čeledi Ergasilidae, kteří byli determinováni pomocí morfologicko-molekulárních metod do čtyř různých druhů. Práce je doplněna o autorské kresby všech nalezených druhů. Diskutován je dosavadní přístup k výzkumu parazitických korýšů a možné návrhy na potřebnou revizi v blízké budoucnosti, zejména s využitím molekulárních metod. Abstract Parasitic crustaceans infect fish communities practically all around the world. This diploma thesis focuses on the African lake Tanganyika and cichlid fishes as hosts. The first part presents basic information about the lake and cichlids, followed by available knowledge about parasitic crustaceans from classes Copepoda, Branchiura and order Isopoda. Everything is supplemented with tabular lists of their hosts and references. The practical part evaluates the diversity of parasitic crustaceans collected during an expedition of the Parasitology department (Masaryk University, Brno) to the Lake Tanganyika, in Burundi in 2013. There were 170 cichlids examined, belonging to 23 different species and 11 tribes and differing in some other aspects (feeding behavior, habitat, localities etc.). There were 1265 parasites of family Ergasilidae found overal, they were determined into four different species, using morphological-molecular methods. The thesis is supplemented with the author’s drawings of all species found. The approach taken by researchers in the past is discussed and possible suggestions on the much needed revision of this taxa in the near future, mainly with the use of molecular methods, is provided. Poděkování Rád bych na tomto místě poděkoval vedoucí mé diplomové práce Mgr. Márii Seifertové, Ph.D. za odborné vedení, poskytnutí cenných rad, článků, publikací a za její trpělivý a ochotný přístup. Velký dík patří také RNDr. Martině Dávidové, Ph.D. za pomoc při hledání tématu diplomové práce a poskytnutí rad při prvotní determinaci. V neposlední řadě také děkuji RNDr. Radimu Blažkovi za poskytnutí informací ohledně sběru materiálu, lokalitách a poskytnutí fotografií, Mgr. Michalu Janáčovi Ph.D za pomoc se statistikami a analýzou vlivu různých faktorů. Děkuji také za podporu mé rodině a manželce Shivaun. Prohlášení Prohlašuji, že jsem svoji diplomovou práci vypracoval samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 31. března 2020 ……………………………… Jméno Příjmení OBSAH ÚVOD ........................................................................................................................................... 8 1. LITERÁRNÍ PŘEHLED ....................................................................................................... 9 1.1. Jezero Tanganika ........................................................................................................... 9 1.2. Čeleď Cichlidae .......................................................................................................... 13 1.2.1. Obecná charakteristika ryb čeledi Cichlidae ....................................................... 13 1.2.2. Ryby čeledi Cichlidae v jezeře Tanganika .......................................................... 16 1.3. Endemismus ................................................................................................................ 20 1.4. Parazitičtí korýši ryb čeledi Cichlidae v jezeře Tanganika ......................................... 21 1.4.1. Přehled dosud popsaných druhů parazitických korýšů v jezeře Tanganika .......... 22 1.4.2. Klanonožci (Copepoda) .......................................................................................... 23 1.4.2.1. Ergasilidae von Nordmann, 1832 .................................................................... 23 1.4.2.2. Lernaeidae Cobbold, 1879 .............................................................................. 28 1.4.3. Branchiura (kapřivci) .............................................................................................. 32 1.4.4. Isopoda .................................................................................................................... 36 2. MATERIÁL A METODY .................................................................................................. 39 2.1. Lokality a sběr materiálu ............................................................................................. 39 2.2. Morfologická determinace .......................................................................................... 42 2.3. Epidemiologické charakteristiky a analýza vlivu faktorů ........................................... 43 2.4. Molekulární analýza .................................................................................................... 47 3. VÝSLEDKY ....................................................................................................................... 50 3.1. Morfologicko – taxonomické zhodnocení................................................................... 52 3.1.1. Ergasilus megacheir ............................................................................................ 53 3.1.2. Ergasilus sp.1 ...................................................................................................... 55 3.1.3. Ergasilus sp.2 ...................................................................................................... 57 3.1.4. Ergasilus sp.3 ...................................................................................................... 59 3.2. Epidemiologické charakteristiky a vliv různých faktorů na infekci ............................ 61 4. DISKUSE ............................................................................................................................ 76 ZÁVĚR ....................................................................................................................................... 83 SEZNAM LITERATURY .......................................................................................................... 84 PŘÍLOHY ................................................................................................................................. 108 7 ÚVOD Parazitičtí korýši jsou velmi diverzifikovanou, leč v mnoha oblastech světa poslední dobou opomíjenou skupinou organismů. Nejinak je tomu v Tanganice, nejhlubším a druhém největším jezeře v Africe. Od svého objevu v roce 1858 se těší značné pozornosti badatelů, stále však skrývá mnohá tajemství a nezodpovězené otázky. Již několik desetiletí uplynulo od vydání poslední práce, která se problematikou alespoň některých parazitů podkmenu Crustacea v dané oblasti zabývala a je načase tyto informace aktualizovat. Dá se předpokládat, že diverzita parazitických korýšů v Tanganice je zejména v čeledi Ergasilidae daleko větší, než je doposud známo (zatím 4 popsané druhy). Několik druhů je známo pouze ze svých původních popisů a od té doby již nebyli znovu nalezeni. Jezero samotné je se svou obecně bohatou diverzitou fauny i dnes velkým lákadlem pro vědce z různých oborů. Mezi ty patří i pracovní skupina oddělení Parazitologie (Ústav botaniky a zoologie, Přírodovědecká fakulta, Masarykova univerzita), jejichž členové se věnují zejména studiu parazitů ze třídy Monogenea. V rámci expedice do Burundi byl v roce 2013 nasbírán i materiál pro studium parazitických korýšů, který od té doby čekal na zpracování a vyhodnocení. Hostiteli bylo široké spektrum ryb z čeledi Cichlidae, které tvoří nejvýznamnější složku rybích společenstev v jezeře Tanganika. Jejich rapidní evoluční vývoj v procesech adaptivní radiace a speciace, vysoká úroveň endemismu, druhová i ekologická diverzita, to vše je předurčuje k tomu stát se vítaným objektem i pro výzkum
Recommended publications
  • Evolutionary History of Lake Tanganyika's Predatory Deepwater
    Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 716209, 10 pages doi:10.1155/2012/716209 Research Article Evolutionary History of Lake Tanganyika’s Predatory Deepwater Cichlids Paul C. Kirchberger, Kristina M. Sefc, Christian Sturmbauer, and Stephan Koblmuller¨ Department of Zoology, Karl-Franzens-University Graz, Universitatsplatz¨ 2, 8010 Graz, Austria Correspondence should be addressed to Stephan Koblmuller,¨ [email protected] Received 22 December 2011; Accepted 5 March 2012 Academic Editor: R. Craig Albertson Copyright © 2012 Paul C. Kirchberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence of geographically fragmented populations alternating with locally restricted secondary contact and introgression between incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification, and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
    Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community.
    [Show full text]
  • The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten: Publications Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community.
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Morphology, Molecules, and Monogenean Parasites: an Example of an Integrative Approach to Cichlid Biodiversity
    RESEARCH ARTICLE Morphology, Molecules, and Monogenean Parasites: An Example of an Integrative Approach to Cichlid Biodiversity Maarten Van Steenberge1,2,3*, Antoine Pariselle4¤a, Tine Huyse1,2, Filip A. M. Volckaert2, Jos Snoeks1,2, Maarten P. M. Vanhove1,2,5¤b 1 Biology Department, Royal Museum for Central Africa, Tervuren, Belgium, 2 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium, 3 Institute of Zoology, University of Graz, Graz, Austria, 4 Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier, Montpellier, France, 5 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece ¤a Current address: IRD, ISE-M, Yaoundé, Cameroon ¤b Current address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium * [email protected] OPEN ACCESS Citation: Van Steenberge M, Pariselle A, Huyse T, Abstract Volckaert FAM, Snoeks J, Vanhove MPM (2015) Morphology, Molecules, and Monogenean Parasites: The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over An Example of an Integrative Approach to Cichlid a century; its unique cichlid communities are a preferred model for evolutionary research. Biodiversity. PLoS ONE 10(4): e0124474. doi:10.1371/journal.pone.0124474 Although species delineation is, in most cases, relatively straightforward, higher-order clas- sifications were shown not to agree with monophyletic groups. Here, traditional morphologi- Academic Editor: Robert Guralnick, University of Colorado, UNITED STATES cal methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread Received: August 19, 2014 and abundant cichlids are poorly understood.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • Hered 347 Master..Hered 347 .. Page702
    Heredity 80 (1998) 702–714 Received 3 June 1997 Phylogeny of African cichlid fishes as revealed by molecular markers WERNER E. MAYER*, HERBERT TICHY & JAN KLEIN Max-Planck-Institut f¨ur Biologie, Abteilung Immungenetik, Corrensstr. 42, D-72076 T¨ubingen, Germany The species flocks of cichlid fish in the three great East African Lakes, Victoria, Malawi, and Tanganyika, have arisen in each lake by explosive adaptive radiation. Various questions concerning their phylogeny have not yet been answered. In particular, the identity of the ancestral founder species and the monophyletic origin of the haplochromine cichlids from the East African lakes have not been established conclusively. In the present study, we used the anonymous nuclear DNA marker DXTU1 as a step towards answering these questions. A 280 bp-fragment of the DXTU1 locus was amplified by the polymerase chain reaction from East African lacustrine species, the East African riverine cichlid species Haplochromis bloyeti, H. burtoni and H. sparsidens, and other African cichlids. Sequencing revealed several indels and substitutions that were used as cladistically informative markers to support a phylogenetic tree constructed by the neighbor-joining method. The topology, although not supported by high bootstrap values, corresponds well to the geographical distribution and previous classifica- tion of the cichlids. Markers could be defined that: (i) differentiate East African from West African cichlids; (ii) distinguish the riverine and Lake Victoria/Malawi haplochromines from Lake Tanganyika cichlids; and (iii) indicate the existence of a monophyletic Lake Victoria cichlid superflock which includes haplochromines from satellite lakes and East African rivers. In order to resolve further the relationship of East African riverine and lacustrine species, mtDNA cytochrome b and control region segments were sequenced.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa)
    Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by M.K. Oliver, Ph.D. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by Michael K. Oliver, Ph.D. Peabody Museum of Natural History, Yale University Updated 24 June 2020 First posted June 1999 The cichlids of Lake Malawi constitute the largest vertebrate species flock and largest lacustrine fish fauna on earth. This list includes all cichlid species, and the few subspecies, that have been formally described and named. Many–several hundred–additional endemic cichlid species are known but still undescribed, and this fact must be considered in assessing the biodiversity of the lake. Recent estimates of the total size of the lake’s cichlid fauna, counting both described and known but undescribed species, range from 700–843 species (Turner et al., 2001; Snoeks, 2001; Konings, 2007) or even 1000 species (Konings 2016). Additional undescribed species are still frequently being discovered, particularly in previously unexplored isolated locations and in deep water. The entire Lake Malawi cichlid metaflock is composed of two, possibly separate, endemic assemblages, the “Hap” group and the Mbuna group. Neither has been convincingly shown to be monophyletic. Membership in one or the other, or nonendemic status, is indicated in the checklist below for each genus, as is the type species of each endemic genus. The classification and synonymies are primarily based on the Catalog of Fishes with a few deviations. All synonymized genera and species should now be listed under their senior synonym. Nearly all species are endemic to L. Malawi, in some cases extending also into the upper Shiré River including Lake Malombe and even into the middle Shiré.
    [Show full text]
  • Dynamics of Sex Chromosome Evolution in a Rapid Radiation Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.335596; this version posted October 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dynamics of sex chromosome evolution in a rapid radiation of 2 cichlid fishes 3 Athimed El Taher1, Fabrizia Ronco1, Michael Matschiner1,2,3, Walter Salzburger1, Astrid 4 Böhne1,4* 5 1Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland 6 2Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. 7 3Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 8 Oslo, Norway. 9 4Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany 10 *e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.335596; this version posted October 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 11 Dynamics of sex chromosome evolution in a rapid radiation of 12 cichlid fishes 13 Abstract 14 Sex is a fundamental trait that is determined, depending on the species, by different 15 environmental and/or genetic factors, including various types of sex chromosomes. However, 16 while the functioning and evolution of sex chromosomes have been explored in species 17 scattered across the eukaryotic tree of life, little is known about tempo and mode of sex 18 chromosome evolution in closely related species.
    [Show full text]