Ancyrocephalidae (Monogenea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community. -
Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. -
Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service -
View/Download
CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what -
The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten: Publications Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community. -
Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families. -
Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) From
RESEARCH ARTICLE Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘ ’ a11111 Beverleyburtonae Group and Description of Two New Species Amira Chaabane1*, Lassad Neifar1, Delphine Gey2, Jean-Lou Justine3 1 Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia, 2 UMS 2700 Service de Systématique moléculaire, Muséum National d'Histoire Naturelle, OPEN ACCESS Sorbonne Universités, Paris, France, 3 ISYEB, Institut Systématique, Évolution, Biodiversité, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France Citation: Chaabane A, Neifar L, Gey D, Justine J-L (2016) Species of Pseudorhabdosynochus * [email protected] (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘Beverleyburtonae Group’ Abstract and Description of Two New Species. PLoS ONE 11 (8): e0159886. doi:10.1371/journal.pone.0159886 Pseudorhabdosynochus Yamaguti, 1958 is a species-rich diplectanid genus, mainly restricted to the gills of groupers (Epinephelidae) and especially abundant in warm seas. Editor: Gordon Langsley, Institut national de la santé et de la recherche médicale - Institut Cochin, Species from the Mediterranean are not fully documented. Two new and two previously FRANCE known species from the gills of Mycteroperca spp. (M. costae, M. rubra, and M. marginata) Received: April 28, 2016 in the Mediterranean and Eastern Atlantic Ocean are described here from new material and slides kept in collections. Identifications of newly collected fish were ascertained by barcod- Accepted: July 8, 2016 ing of cytochrome c oxidase subunit I (COI) sequences. -
The Biology of Four Haplochromine Species of Lake Kivu (Zaire) with Evolutionary Implications
The Biology of Four Haplochromine Species of Lake Kivu (Zaire) with Evolutionary Implications by Michele Losseau-Hoebeke Thesis Submitted in fulfilment of tbe requirements for !be Degree of Master of Science Department of Ichtbyology and Fisheries Science Rhodes University Grabamstown Soutb Africa January 1992 "La pensee est un oiseau de l'espace, qui dans une cage de mots peut ouvrir ses ailes mais ne peut voler." (Khalil Gibran, 1923) 1 Table of Contents page List of figures List of tables Acknowledgements Abstract I. Introduction 1 II. Lake Kivu 4 1. Introduction 4 2. Geological history 5 3. Limnology 10 4. Biotopes and their associated faunas 13 III. Study Area: Tsbegera Island 18 1. Introduction 18 2. Physiographic features 19 3. Related faunas 21 IV. Taxonomy 22 1. Introduction 22 2. Characters used in species' identification 23 3. Diagnostic features of the species studied ................. ,, ' . .. .. .. 25 Haplochromis astaJ<Hion a. Taxonomy ..... .... ... ... .... ... .. .......... .. .. 26 h. Species' identification . • . 26 c. Relation between form and function ........ ..... •. ... ...,. 29 d. Phyletic classification . • . 30 Haplochromis olivaceus and Haplochromis crebridens a. Taxonomy ........ ....... • ......... ........ • .... 31 h. Species' identification . 31 c. Relation between form and function . 37 d. Phyletic classification .............. ... • ..... .. ..... .. 38 Haplochromis paucUkns a. Taxonomy ..................... ... .... .. ... ... .. .. 39 h. Species' identification . 39 c. Relation between form and function -
A Parasite of Deep-Sea Groupers (Serranidae) Occurs Transatlantic
Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar To cite this version: Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar. Pseudorhab- dosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic. PeerJ, PeerJ, 2016, 4, pp.e2233. 10.7717/peerj.2233. hal- 02557717 HAL Id: hal-02557717 https://hal.archives-ouvertes.fr/hal-02557717 Submitted on 16 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (Hyporthodus spp.), -
Towards a Regional Information Base for Lake Tanganyika Research
RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned. -
Morphology, Molecules, and Monogenean Parasites: an Example of an Integrative Approach to Cichlid Biodiversity
RESEARCH ARTICLE Morphology, Molecules, and Monogenean Parasites: An Example of an Integrative Approach to Cichlid Biodiversity Maarten Van Steenberge1,2,3*, Antoine Pariselle4¤a, Tine Huyse1,2, Filip A. M. Volckaert2, Jos Snoeks1,2, Maarten P. M. Vanhove1,2,5¤b 1 Biology Department, Royal Museum for Central Africa, Tervuren, Belgium, 2 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium, 3 Institute of Zoology, University of Graz, Graz, Austria, 4 Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier, Montpellier, France, 5 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece ¤a Current address: IRD, ISE-M, Yaoundé, Cameroon ¤b Current address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium * [email protected] OPEN ACCESS Citation: Van Steenberge M, Pariselle A, Huyse T, Abstract Volckaert FAM, Snoeks J, Vanhove MPM (2015) Morphology, Molecules, and Monogenean Parasites: The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over An Example of an Integrative Approach to Cichlid a century; its unique cichlid communities are a preferred model for evolutionary research. Biodiversity. PLoS ONE 10(4): e0124474. doi:10.1371/journal.pone.0124474 Although species delineation is, in most cases, relatively straightforward, higher-order clas- sifications were shown not to agree with monophyletic groups. Here, traditional morphologi- Academic Editor: Robert Guralnick, University of Colorado, UNITED STATES cal methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread Received: August 19, 2014 and abundant cichlids are poorly understood.