Ancyrocephalidae (Monogenea)

Total Page:16

File Type:pdf, Size:1020Kb

Ancyrocephalidae (Monogenea) Contributions to Zoology, 84 (1) 25-38 (2015) Ancyrocephalidae (Monogenea) of Lake Tanganyika: Does the Cichlidogyrus parasite fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host’s phylogenetic affinities? Antoine Pariselle1, 2, Maarten Van Steenberge3, 4, Jos Snoeks3, 4, Filip A.M. Volckaert3, Tine Huyse3, 4, Maarten P.M. Vanhove3, 4, 5, 6, 7 1 Institut des Sciences de l’Évolution, IRD-CNRS-Université Montpellier 2, CC 063, Place Eugène Bataillon, 34095 Montpellier cedex 05, France 2 Present address: Institut de Recherche pour le Développement, ISE-M, B.P. 1857, Yaoundé, Cameroon 3 Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium 4 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium 5 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic 6 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens- Sounio Avenue, PO Box 712, Anavyssos GR-190 13, Greece 7 E-mail: [email protected] Key words: Africa, Dactylogyridea, Petrochromis, Platyhelminthes, species description, Tropheini Abstract Contents The faunal diversity of Lake Tanganyika, with its fish species Introduction ....................................................................................... 25 flocks and its importance as a cradle and reservoir of ancient Material and methods ..................................................................... 27 fish lineages seeding other radiations, has generated a consider- Results ................................................................................................ 27 able scientific interest in the fields of evolution and biodiversity. Discussion ......................................................................................... 28 The Tropheini, an endemic Tanganyikan cichlid tribe, fills a Acknowledgements ......................................................................... 29 peculiar phylogenetic position, being closely related to the References ......................................................................................... 30 haplochromine radiations of Lakes Malawi and Victoria. Sev- Appendix ........................................................................................... 33 eral problems remain regarding their genus-level classification. For example, the monotypic genus Interochromis is phyloge- netically nested within Petrochromis; its only representative, I. Introduction loocki, has often been reclassified. As monogenean flatworms are useful markers for fish phylogeny and taxonomy, the mono- genean fauna of Interochromis loocki was examined and com- Lake Tanganyika is, with an estimated age of 9-12 million pared to that of other tropheine cichlids. Three new monoge- years (Cohen et al., 1997), the oldest of the East African nean species belonging to Cichlidogyrus are described from Great Lakes. Although less species-rich than Lakes Interochromis loocki: Cichlidogyrus buescheri Pariselle and Victoria and Malawi, its 250 endemic cichlids form the Vanhove, sp. nov., Cichlidogyrus schreyenbrichardorum Pari- morphologically, behaviourally and phylogenetically selle and Vanhove, sp. nov. and Cichlidogyrus vealli Pariselle and Vanhove, sp. nov. Their haptoral anchors remind more of most diverse lacustrine cichlid fauna (Snoeks, 2000) congeners infecting species of Petrochromis than of all Cichli­ which acted as an evolutionary reservoir from which dogyrus spp. hitherto described from other tropheine cichlids. other lineages evolved (Salzburger et al., 2005). The Attachment organ morphology has been proven to mirror the lake’s cichlids are grouped into 14 to 17 tribes (Poll, 1986; phylogenetic affinities of Cichlidogyrus lineages. Therefore the Takahashi, 2003; Koblmüller et al., 2008). One of these monogenean parasite fauna of I. loocki reflects this host’s posi- tribes, the Tropheini, is nested within the haplochro- tion within Petrochromis. Moreover, I. loocki differs in habitat choice from Petrochromis spp. This study hence confirms that mines, which contains the mega-diverse cichlid flocks host range and host-specificity in Cichlidogyrus spp. parasitiz- of Lake Malawi and Lake Victoria (Salzburger et al., ing tropheines is determined by the host’s phylogenetic position, 2005). In comparison to these radiations, tropheines are rather than by a shared ecological niche. relatively species-poor, as they currently only comprise Downloaded from Brill.com09/27/2021 02:36:39PM via free access 26 Pariselle et al. – Cichlidogyrus monogenean parasites of the cichlid Interochromis loocki 24 species classified in nine genera (Poll, 1986; Taka- The main difference between Interochromis and hashi, 2003; Takahashi and Koblmüller, 2014). Petrochromis is that the outer oral teeth of I. loocki are Traditionally, generic definitions of Lake Tanganyika bicuspid, whereas species belonging to the latter genus cichlids are largely based on oral tooth morphology (Poll, have tricuspid outer teeth. The similarity in diet between 1986). For many tribes, this has proven to be an over- I. loocki and Petrochromis spp. was also observed after simplification (Sturmbauer et al., 2010). Yet, in tropheine stomach analyses (Muschick et al. 2012). Konings cichlids, phylogenetic reconstructions to a large extent (1998) observed that juvenile I. loocki collect algae from support the grouping of species based on similarities in plants, just as Petrochromis species collect these from oral morphology (Koblmüller et al. 2010; Van Steen- rocks. Interochromis and Petrochromis were also shown berge, 2014). One tropheine species, Interochromis to be closely related in a nuclear phylogeny of Tro- loocki (Poll, 1949), has, however, been particularly dif- pheini (Koblmüller et al. 2010). Here, I. loocki rendered ficult to classify and its generic placement has changed Petrochromis paraphyletic as it was sister to two Petro­ frequently. chromis species: P. orthognathus Matthes, 1959 and P. Interochromis loocki was described based on 13 fasciolatus Boulenger, 1914. This is in agreement with specimens collected at Kigoma (Tanzania) (type local- Yamaoka (1997), who described the feeding behaviour ity) and Kalemie (Democratic Republic of Congo). Poll of different Petrochromis species and who noticed the (1949) originally described the species as belonging to similarity between these two Petrochromis species and Limnotilapia Regan, 1920, which he considered to rep- I. loocki. resent a ‘limnetic’ form of Tilapia Smith 1840. The In this study, we explore another perspective with species was later transferred to Simochromis Boulenger, regard to the question of the relationships of I. loocki. 1898 when Greenwood (1978) synonymised Limnotila- To this end, we investigate the monogenean gill parasite pia with Simochromis. This decision was motivated in fauna infecting this species. Monogenean flatworms a subsequent paper in which Greenwood (1979) stated exhibit considerable potential for improving our under- that, although the type species of both genera, S. dia- standing of their hosts’ biogeography, phylogeny and gramma (Günther, 1894) and L. dardennii (Boulenger, taxonomy (Guégan and Lambert, 1990, Paugy et al., 1899), differ greatly in osteological characters, I. loocki 1990; Pariselle, 1996; Boeger and Kritsky, 2003; Barson is intermediate between the two. Poll (1986) resurrected et al., 2010; Pariselle et al., 2011; Vanhove, 2012; Van- Limnotilapia; yet, as he did not refute Greenwood’s hove et al., 2013, 2014). Given their simple single-host (1979) observations, I. loocki remained in Simochromis. lifecycle, high species diversity and relatively high host- This was justified as Poll (1986) considered I. loocki specificity, these flatworms are good markers for closer to Simochromis than to Limnotilapia. Moreover, studying biodiversity and speciation in groups of he claimed that the osteological similarities between closely related fishes (Pariselle et al., 2003b). The most both genera were also shared with other representatives species-rich genus on African cichlids is Cichlidogyrus of the Tropheini (Poll, 1986). Paperna, 1960 (Pariselle and Euzet, 2009). This genus Interochromis Yamaoka, Hori and Kuwamura, 1998 is usually considered a member of the Ancyrocephalidae, was erected by Yamaoka et al. (1998) as a monotypic although studies have suggested the group to be non- genus to harbour I. loocki. The reason for describing the monophyletic. In that case its representatives should be genus was based on the morphological and ecological considered to belong to the Dactylogyridae (Kritsky and similarities between I. loocki and species of Petro- Boeger, 1989; Šimková et al., 2003, 2006; Plaisance et chromis Boulenger, 1898 (Yamaoka et al., 1998) and the al., 2005). Cichlidogyrus spp. are common parasites of differences between I. loocki and species of Simo- Tanganyikan cichlids (Vanhove et al., 2011a; Raeymae­ chromis. Yamaoka et al. (1998) argued that, whereas kers et al., 2013); thirteen new species have recently been members of Tropheus Boulenger, 1898, Simochromis, described from Lake Tanganyika (Vanhove et al., 2011b; Pseudosimochromis Nelissen, 1977 and Limnotilapia Gillardin et al., 2012; Muterezi Bukinga et al., 2012; are browsers that use their firmly set teeth to cut of Pariselle et al., 2014). strands of filamentous algae, Interochromis
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
    Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • The Effects of Land Use Disturbance Vary with Trophic Position in Littoral Cichlid Fish Communities from Lake Tanganyika
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten: Publications Received: 28 March 2018 | Revised: 24 January 2019 | Accepted: 5 February 2019 DOI: 10.1111/fwb.13287 ORIGINAL ARTICLE The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika Adam W. Britton1,2 | David J. Murrell1,2 | Rona A. R. McGill3 | Christopher J. Doble1,2 | Calum I. Ramage1 | Julia J. Day1,2 1Department of Genetics, Environment and Evolution, University College London, Abstract London, U.K. 1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosys- 2 Centre for Biodiversity and Environmental tems. In particular, land use disturbance can lead to increased levels of pollution, Research, University College London, London, U.K. including elevated nutrient and sediment loads whose negative impacts range 3NERC Life Sciences Mass Spectrometry from the community to the individual level. However, few studies have investi- Facility, Scottish Universities Environmental Research Centre, East Kilbride, U.K. gated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid Correspondence Adam W. Britton and Julia J. Day, fishes, which comprise hundreds of species representing a wide range of feeding Department of Genetics, Environment strategies. Cichlids are at their most diverse within the near-shore environment; and Evolution, University College London, Gower Street, London, U.K. however, land use disturbance of this environment has led to decreasing diversity, Emails: [email protected]; particularly in herbivores. We therefore tested if there is a uniform effect of pol- [email protected] lution across species and trophic groups within the hyper-diverse rocky shore Funding information cichlid fish community.
    [Show full text]
  • Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
    www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families.
    [Show full text]
  • Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) From
    RESEARCH ARTICLE Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘ ’ a11111 Beverleyburtonae Group and Description of Two New Species Amira Chaabane1*, Lassad Neifar1, Delphine Gey2, Jean-Lou Justine3 1 Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia, 2 UMS 2700 Service de Systématique moléculaire, Muséum National d'Histoire Naturelle, OPEN ACCESS Sorbonne Universités, Paris, France, 3 ISYEB, Institut Systématique, Évolution, Biodiversité, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France Citation: Chaabane A, Neifar L, Gey D, Justine J-L (2016) Species of Pseudorhabdosynochus * [email protected] (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the ‘Beverleyburtonae Group’ Abstract and Description of Two New Species. PLoS ONE 11 (8): e0159886. doi:10.1371/journal.pone.0159886 Pseudorhabdosynochus Yamaguti, 1958 is a species-rich diplectanid genus, mainly restricted to the gills of groupers (Epinephelidae) and especially abundant in warm seas. Editor: Gordon Langsley, Institut national de la santé et de la recherche médicale - Institut Cochin, Species from the Mediterranean are not fully documented. Two new and two previously FRANCE known species from the gills of Mycteroperca spp. (M. costae, M. rubra, and M. marginata) Received: April 28, 2016 in the Mediterranean and Eastern Atlantic Ocean are described here from new material and slides kept in collections. Identifications of newly collected fish were ascertained by barcod- Accepted: July 8, 2016 ing of cytochrome c oxidase subunit I (COI) sequences.
    [Show full text]
  • The Biology of Four Haplochromine Species of Lake Kivu (Zaire) with Evolutionary Implications
    The Biology of Four Haplochromine Species of Lake Kivu (Zaire) with Evolutionary Implications by Michele Losseau-Hoebeke Thesis Submitted in fulfilment of tbe requirements for !be Degree of Master of Science Department of Ichtbyology and Fisheries Science Rhodes University Grabamstown Soutb Africa January 1992 "La pensee est un oiseau de l'espace, qui dans une cage de mots peut ouvrir ses ailes mais ne peut voler." (Khalil Gibran, 1923) 1 Table of Contents page List of figures List of tables Acknowledgements Abstract I. Introduction 1 II. Lake Kivu 4 1. Introduction 4 2. Geological history 5 3. Limnology 10 4. Biotopes and their associated faunas 13 III. Study Area: Tsbegera Island 18 1. Introduction 18 2. Physiographic features 19 3. Related faunas 21 IV. Taxonomy 22 1. Introduction 22 2. Characters used in species' identification 23 3. Diagnostic features of the species studied ................. ,, ' . .. .. .. 25 Haplochromis astaJ<Hion a. Taxonomy ..... .... ... ... .... ... .. .......... .. .. 26 h. Species' identification . • . 26 c. Relation between form and function ........ ..... •. ... ...,. 29 d. Phyletic classification . • . 30 Haplochromis olivaceus and Haplochromis crebridens a. Taxonomy ........ ....... • ......... ........ • .... 31 h. Species' identification . 31 c. Relation between form and function . 37 d. Phyletic classification .............. ... • ..... .. ..... .. 38 Haplochromis paucUkns a. Taxonomy ..................... ... .... .. ... ... .. .. 39 h. Species' identification . 39 c. Relation between form and function
    [Show full text]
  • A Parasite of Deep-Sea Groupers (Serranidae) Occurs Transatlantic
    Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar To cite this version: Amira Chaabane, Jean-Lou Justine, Delphine Gey, Micah Bakenhaster, Lassad Neifar. Pseudorhab- dosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts ( Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic. PeerJ, PeerJ, 2016, 4, pp.e2233. 10.7717/peerj.2233. hal- 02557717 HAL Id: hal-02557717 https://hal.archives-ouvertes.fr/hal-02557717 Submitted on 16 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (Hyporthodus spp.),
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Morphology, Molecules, and Monogenean Parasites: an Example of an Integrative Approach to Cichlid Biodiversity
    RESEARCH ARTICLE Morphology, Molecules, and Monogenean Parasites: An Example of an Integrative Approach to Cichlid Biodiversity Maarten Van Steenberge1,2,3*, Antoine Pariselle4¤a, Tine Huyse1,2, Filip A. M. Volckaert2, Jos Snoeks1,2, Maarten P. M. Vanhove1,2,5¤b 1 Biology Department, Royal Museum for Central Africa, Tervuren, Belgium, 2 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium, 3 Institute of Zoology, University of Graz, Graz, Austria, 4 Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier, Montpellier, France, 5 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece ¤a Current address: IRD, ISE-M, Yaoundé, Cameroon ¤b Current address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium * [email protected] OPEN ACCESS Citation: Van Steenberge M, Pariselle A, Huyse T, Abstract Volckaert FAM, Snoeks J, Vanhove MPM (2015) Morphology, Molecules, and Monogenean Parasites: The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over An Example of an Integrative Approach to Cichlid a century; its unique cichlid communities are a preferred model for evolutionary research. Biodiversity. PLoS ONE 10(4): e0124474. doi:10.1371/journal.pone.0124474 Although species delineation is, in most cases, relatively straightforward, higher-order clas- sifications were shown not to agree with monophyletic groups. Here, traditional morphologi- Academic Editor: Robert Guralnick, University of Colorado, UNITED STATES cal methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread Received: August 19, 2014 and abundant cichlids are poorly understood.
    [Show full text]