Solar Cells and Fuel Cells the Technology Has Arrived

Total Page:16

File Type:pdf, Size:1020Kb

Solar Cells and Fuel Cells the Technology Has Arrived Whole Number 201 Solar Cells and Fuel Cells The technology has arrived. Biogas fuel cells convert raw refuse into energy to provide electrical power generation. Raw refuse or other organic waste is fermented to release Mechanism of the fuel cell power generation system methane, and this methane gas is used as fuel for the fuel cells in a for converting raw refuse into biogas Biogas for biogas power generating system. Fuel cells generate electrical and Raw Desulfurization/ Gas purification refuse Water fuel cell holder thermal energy by chemically reacting hydrogen, which has been Produced biogas extracted from the methane gas, Hot Crusher Mixing Methane water Elec- with oxygen in the atmosphere. & tank fermenta- Fuel cell tricity sorter tion This promising technology is expected to lead to reduced CO2 Waste water Sewer discharge processing Dehydrated sludge emissions and to the effective 100 kW utilization of natural resources. Phosphoric-acid fuel cell Biogas Fuel Cell Power Generation System Solar Cells and Fuel Cells CONTENTS Present Status and Prospects for New Energy 34 New Energy Generation System 40 for Fuji Electric Human Resources Development Center Solar Cell Development Trends and Future Prospects 45 Cover photo: The production of solar cells worldwide is supported by various national governments and is grow- Studies on the Outdoor Performance of Amorphous Silicon Solar Cells 49 ing by nearly 40 % annually, and expectations for photovoltaic gen- eration are increasing. The future promotion and popularization of this technology requires the devel- opment of techniques capable of re- Application of Solar Cell Integrated Roofing Material 55 alizing broad based cost reductions. at Railway Stations Fuji Electric is engaged in the development of amorphous solar cells, which are fabricated on a low- cost substrate of plastic film, are lightweight and well suited for mass Fuel Cell Development Trends and Future Prospects 60 production. The cover photo shows the Health Promotion Center at Fuji Electric Corporate Research and Development Ltd. Film-substrate amorphous solar cells have been Development of Polymer Electrolyte Fuel Cells 64 mounted on the roof of this build- ing and are undergoing verification testing. The solar cells on the left half of the roof are conventional cells encapsulated by a glass sub- strate, and the cells on the right half Present Status and Future Prospects 68 are integrated with building mate- of Biogas Powered Fuel Cell Power Units rial and are attached to tiles. The solar cells complement the design of the building and create a subdued atmosphere. Head Office : No.11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan Present Status and Prospects for New Energy Norio Kanie Noriyuki Nakajima 1. Introduction the production, creation and utilization of alternative energy, which are not yet in widespread use due to The situation regarding energy in Japan is chang- economic reasons, but are expected to contribute ing dramatically. This change stems from efforts to significantly to accelerating the adoption of alternative protect the global environment beginning with the 3rd energy.” The resources specifically mentioned include session of the Conference of the Parties to the United photovoltaic generation, wind power, utilization of Nations Framework Convention on Climate Change solar heat, ocean thermal energy conversion, waste (COP3), held in 1997 in Kyoto, Japan, and is also due power generation, thermal utilization of waste, waste- to the liberalization of the electric power market in derived fuel production, electric (and hybrid) powered Japan. vehicles, natural gas-fueled vehicles, methanol-fueled Ever since the first and second oil crises, the vehicles, natural gas cogeneration, and fuel cells. research and use of alternative energy has been Figure 1 shows the technical levels of these new types promoted in Japan. Examples of alternative energies of energy. include coal liquefaction, photovoltaic generation, utili- zation of solar heat, and geothermal power generation. 2.2 Present status A typical household had a solar-powered water heater In December 1999, a New Energy Subcommittee installed on the house roof to supply hot water for a was formed within the Ministry of International Trade bathtub, for example. At one time, 800 thousand of and Industry’s (presently the Ministry of Economy, these solar-powered water heaters were installed an- Trade and Industry) Advisory Committee for Energy, nually, contributing to a reduction in demand for crude and this subcommittee began studying the future oil. However, as the supply of crude oil stabilized, course of Japan’s energy policy. After a total of 18 solar-powered water heaters gradually slipped from meetings, the subcommittee released a written report public awareness. in June 2001, the contents of which specified the The subsequent deterioration of the global environ- quantity of new energy presently in use, the expected ment due to global warming, acid rain, ozone deple- adoption and target levels for new energy by 2010 (see tion, reduction of tropical forests, etc. has become Table 1). New energy accounted for 1.2 % of the total critical issue for the international community. Sulfur supply of primary energy (equivalent to 6,930 ML of oxides (SOx) and nitrogen oxides (NOx) emissions are crude oil) in 1999, and 3 % of the total supply regulated, and statutory regulations have mandated (equivalent to 19,100 ML of crude oil) is targeted by the discontinuation of carbofluorocarbon gas produc- 2010. tion. In order to combat global warming, we must The widespread adoption of new energy hinges reduce those substances that contribute to the warm- upon the ability to achieve economic efficiency. Table 2 ing problem. Carbon dioxide (CO2), one of the sub- lists examples of estimated unit prices for power stances contributing to global warming, is generated generation by various types of new energy resources. mainly by the combustion of fossil fuels, and therefore Sufficient technical capability for practical applica- the usage of fossil fuels must be curtailed. The tion of new energy resources has been achieved and introduction of new alternative energy sources will ongoing technical development is concentrating on lead to a reduction in CO2 usage. finding ways to lower costs. Various measures are being studied in order to achieve the targets for 2010. 2. Present Status and Issues of New Energy One such measure under consideration is a bill requiring electric companies to provide a certain 2.1 Definition minimum quantity of power from new energy sources. New energy is prescribed under the Special Law for Promoting New Energy Utilization as “resources for 34 Vol. 49 No. 2 FUJI ELECTRIC REVIEW Fig.1 Technical level of new energy resources Technical level Demand side energy Supply side energy and renewable energy Resources already in practical Petroleum applications and in widespread use, due to attainment of suitable Fossil fuel alternative energy technical and economical levels Renewable (natural) energy Recyclable energy Hydropower Geothermal energy Wind power generation Waste power generation Resources at a technical level Clean energy vehicles Photovoltaic power Biomass Thermal utilization of suitable for practical application, Natural gas cogeneration generation waste but due to economic considera- Fuel cells Utilization of solar heat (Black liquor) Waste-derived fuel tions have not been sufficiently Unutilized energy (Waste wood) production deployed (Thermal utilization of (Biogas) Water source heat ice and snow) pumps Wave power generation (New energy Ocean thermal energy crops) conversion generation Resources that have not yet reached a technical or economic level suitable for practical appli- cation The targeted adoption for all types of new energy is 2.3 Targeted adoption levels at the same level as approximately 3 % of the primary Table 1 shows the targeted levels of new energy energy supply. Policy emphasizes solar power genera- adoption by 2010, as set forth by the New Energy tion, power generation from waste, wind power genera- Subcommittee. The table shows both the case of tion and utilization of solar heat. continuation of the current policy and the target case, which implements additional measures. Policies 2.4 Issues aimed at the target cases were considered. New Issues concerning the adoption of new energy energy can be classified according to the supply-side resources include economic efficiency, output stability and the demand-side. The supply-side includes photo- and utilization factor. The resolution of these issues voltaic generation, wind power generation and waste will accelerate the adoption of new energy. generation, and has a target value of the equivalent of (1) Economic efficiency 19.1 billion liters of crude oil. The demand-side For each type of new energy resource, technical includes clean energy vehicles, natural gas cogenera- development is vigorously pursuing various techniques tion, and fuel cells. to reduce equipment cost. For example, wind power Renewable energy resources include new energy, generation aims to reduce costs by increasing equip- hydropower (general waterpower) and geothermal en- ment capacity, and a 2,500 kW capacity windmill has ergy, and as shown in Table 1 (b), the 2010 estimate been developed. Sixty percent of the cost of a and target is 40 billion liters, or approximately 7 % of photovoltaic power generation system is attributed to the primary energy supply. This target value is 10 the expense
Recommended publications
  • A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
    A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar.
    [Show full text]
  • Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Manuscript post-print for self-archiving purposes Solar Energy Materials and Solar Cells 134, 22—28 (2015) doi:10.1016/j.solmat.2014.11.017 Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With High-Temperature Stability for Thermophotovoltaic Applications. Moisés Garín a*, David Hernández a, Trifon Trifonov a,b, Ramón Alcubilla a,b a Grup de Recerca en Micro i Nanotecnologies, Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Jordi Girona 1-3 Mòdul C4, Barcelona 08034, Spain. b Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, Pascual i Vilà 15, Barcelona 08028, Spain. * E-mail: [email protected] Keywords: selective thermal emitters, thermophotovoltaics, photonic crystals, macroporous silicon ABSTRACT Selective thermal emitters concentrate most of their spontaneous emission in a spectral band much narrower than a blackbody. When used in a thermophovoltaic energy conversion system, they become key elements defining both its overall system efficiency and output power. Selective emitters' radiation spectra must be designed to match their accompanying photocell's band gap and, simultaneously, withstand high temperatures (above 1000 K) for long operation times. The advent of nanophotonics has allowed the engineering of very selective emitters and absorbers; however, thermal stability remains a challenge since 1 of 22 nanostructures become unstable at temperatures much below the melting point of the used materials. In this paper we explore an hybrid 3D dielectric-metallic structure that combines the higher thermal stability of a monocrystalline 3D Silicon scaffold with the optical properties of a thin Platinum film conformally deposited on top.
    [Show full text]
  • 15Th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 Prepared under Task No. WO97G400 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or `process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Perovskite Solar Cells with Large Area CVD-Graphene for Tandem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository 1 Perovskite Solar Cells with Large-Area CVD-Graphene 2 for Tandem Solar Cells 3 Felix Lang *, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and 4 Norbert H. Nickel 5 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium 6 Photovoltaik, Kekuléstr. 5, 12489 Berlin, Germany. 7 8 ABSTRACT: Perovskite solar cells with transparent contacts may be used to compensate 9 thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach 10 stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers 11 with high electrical conductivity and optimal transparency. We address this challenge by 12 implementing large area graphene grown by chemical vapor deposition as highly transparent 13 electrode in perovskite solar cells leading to identical charge collection efficiencies. Electrical 14 performance of solar cells with a graphene-based contact reached those of solar cells with 15 standard gold contacts. The optical transmission by far exceeds that of reference devices and 16 amounts to 64.3 % below the perovskite band gap. Finally, we demonstrate a four terminal 17 tandem device combining a high band gap graphene-contacted perovskite top solar cell 18 (Eg=1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg=1.12 eV). 19 1 1 TOC GRAPHIC. 2 3 4 Hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) attracts ever-growing interest 5 for use as a photovoltaic absorber.1 Only recently, Jeon et al.
    [Show full text]
  • Thin Crystalline Silicon Solar Cells Based on Epitaxial Films Grown at 165°C by RF-PECVD
    CORE Metadata, citation and similar papers at core.ac.uk Provided by HAL-Polytechnique Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas To cite this version: Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas. Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD. Solar Energy Materials and Solar Cells, Elsevier, 2011, 95 (8), pp.2260-2263. <10.1016/j.solmat.2011.03.038>. <hal-00749873v3> HAL Id: hal-00749873 https://hal-polytechnique.archives-ouvertes.fr/hal-00749873v3 Submitted on 14 May 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD Romain Carioua),*, Martin Labrunea),b), P. Roca i Cabarrocasa) aLPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France bTOTAL S.A., Gas & Power, R&D Division, Tour La Fayette, 2 Place des Vosges, La Défense 6, 92 400 Courbevoie, France Keywords Low temperature, Epitaxy; PECVD; Si thin film; Solar cell Abstract We report on heterojunction solar cells whose thin intrinsic crystalline absorber layer has been obtained by plasma enhanced chemical vapor deposition at 165°C on highly doped p-type (100) crystalline silicon substrates.
    [Show full text]
  • Building-Integrated Photovoltaics: an Emerging Market Executive Summary
    GTM RESEARCH JULY 2010 BUILDING-INTEGRATED PHOTOVOLTAICS: AN EMERGING MARKET EXECUTIVE SUMMARY COPYRIGHT 2010, GREENTECH MEDIA INC. ALL RIGHTS RESERVED GTM RESEARCH JULY 2010 TABLE OF CONTENTS EXECUTIVE SUMMARY 7 1 INTRODUCTION 16 1.1 Introduction 16 1.2 Scope 16 1.3 Methodology 17 2 SOLAR TECHNOLOGIES, MATERIALS AND PRODUCTS 18 2.1 Introduction 18 2.2 Aesthetic and Adoption Considerations 22 2.3 Materials 24 2.3.1 The Integration of Conventional Materials 26 2.3.2 The Evolution and Integration of New Materials 27 2.4 Performance Issues 34 2.5 Building Codes and Standards 36 2.6 Products 46 2.6.1 Roof Element Products 48 2.6.2 Wall Element Products 54 2.6.3 Window Element Products 56 2.6.4 Other Products 58 3 MARKETS AND APPLICATIONS 59 3.1 Introduction 59 3.2 Market Segments 60 3.2.1 Roofs 61 3.2.2 Walls and Façades 63 3.2.3 Windows 64 3.3 Current Market Activities 64 3.3.1 Roofi ng Applications 64 3.3.2 Wall Applications 70 3.3.3 Window Applications 76 3.4 Building Types 78 3.4.1 Commercial BIPV 78 3.4.2 Residential BIPV 81 4 BIPV POLICY ASSESSMENT 86 4.1 North America 88 4.1.1 U.S. 89 4.1.2 Canada 97 4.2 Europe 99 4.2.1 Central Europe 100 4.2.2 Eastern Europe 114 4.3 Asia 116 4.3.1 Japan 116 4.3.2 Australia 118 4.3.3 China 119 4.3.4 India 121 4.3.5 South Korea 122 4.3.6 Taiwan 124 4.3.7 Malaysia 124 COPYRIGHT 2010, GREENTECH MEDIA INC ALL RIGHTS RESERVED BIPV 2010 2 GTM RESEARCH JULY 2010 5 ECONOMICS 126 5.1 Distribution Channel Developments 126 5.2 Economic Assessment 130 5.3 Market Assessment 135 6 KEY BIPV DEVELOPERS AND SUPPLIERS
    [Show full text]
  • Demonstrating Solar Conversion Using Natural Dye Sensitizers
    Demonstrating Solar Conversion Using Natural Dye Sensitizers Subject Area(s) Science & Technology, Physical Science, Environmental Science, Physics, Biology, and Chemistry Associated Unit Renewable Energy Lesson Title Dye Sensitized Solar Cell (DSSC) Grade Level (11th-12th) Time Required 3 hours / 3 day lab Summary Students will analyze the use of solar energy, explore future trends in solar, and demonstrate electron transfer by constructing a dye-sensitized solar cell using vegetable and fruit products. Students will analyze how energy is measured and test power output from their solar cells. Engineering Connection and Tennessee Careers An important aspect of building solar technology is the study of the type of materials that conduct electricity and understanding the reason why they conduct electricity. Within the TN-SCORE program Chemical Engineers, Biologist, Physicist, and Chemists are working together to provide innovative ways for sustainable improvements in solar energy technologies. The lab for this lesson is designed so that students apply their scientific discoveries in solar design. Students will explore how designing efficient and cost effective solar panels and fuel cells will respond to the social, political, and economic needs of society today. Teachers can use the Metropolitan Policy Program Guide “Sizing The Clean Economy: State of Tennessee” for information on Clean Economy Job Growth, TN Clean Economy Profile, and Clean Economy Employers. www.brookings.edu/metro/clean_economy.aspx Keywords Photosynthesis, power, electricity, renewable energy, solar cells, photovoltaic (PV), chlorophyll, dye sensitized solar cells (DSSC) Page 1 of 10 Next Generation Science Standards HS.ESS-Climate Change and Human Sustainability HS.PS-Chemical Reactions, Energy, Forces and Energy, and Nuclear Processes HS.ETS-Engineering Design HS.ETS-ETSS- Links Among Engineering, Technology, Science, and Society Pre-Requisite Knowledge Vocabulary: Catalyst- A substance that increases the rate of reaction without being consumed in the reaction.
    [Show full text]
  • The Technologies and Performance of Solar Shingles and Transparent Solar Glass Paul Tate March 10, 2015
    The Technologies and Performance of Solar Shingles and Transparent Solar Glass Paul Tate March 10, 2015 Originally prepared as a degree requirement for the UIC Master of Energy Engineering program 1 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Outline n Introduction to Building Integrated PV n Solar Shingles Technology n Solar Glass Technology n Conclusions n Questions © 2015 All Rights Reserved 2 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Building Integrated Photovoltaics (BIPV) n Building Materials & Solar Cells ¨ Roofing ¨ Glass ¨ Metal Panels ¨ Overhangs ¨ Awnings, etc. Building Integrated Photovoltaic Installation1 © 2015 All Rights Reserved 3 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate BIPV Building Integrated Photovoltaic Installation2 © 2015 All Rights Reserved 4 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Solar Shingles n Intended for residential pitched roofs n Replace portion of asphalt shingles n Are not rack mounted n Integrate into standard roofing n Multiple technologies utilized © 2015 All Rights Reserved 5 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate CIGS Solar Shingle n Uses Copper Indium Gallium diSelenide (CIGS) thin film technology n Substrate is a proprietary polymer n Size, weight, flexibility similar to asphalt shingle CIGS Cell Schematic Diagram3 © 2015 All Rights Reserved 6 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate CIGS Solar Shingles CIGS Solar Shingles Prior to Installation4 © 2015 All Rights Reserved 7 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • Passive Solar Design
    An Educational Reader from Solar Schoolhouse WHAT’S INSIDE Take a Solar Home Tour ........................ 2 Tracking the Earth’s Path ....................... 4 Heating Things Up ............................... 5 Passive Solar Design ............................ 6 Solar Hot Water .................................. 7 What is Photovoltaics? .......................... 8 How Photovoltaics Works ...................... 9 Cooking with Sunlight ......................... 10 Solar Fountains Run by the Sun............ 12 Building a Model Solar Village .............. 13 Solar Student Builders ........................ 14 The Next Generation of Solar Homes .... 15 Solar Laundromat .............................. 15 Sun & Games ................................... 16 solarschoolhouse.org Using the Sun to Heat, Cool and Power Your Home Sponsored by: P Take a Solar Home Tour On the outside this house looks like many others. Walking past Solar-assisted hot water it, you might not even know it was a solar home. However, once system heats water and you examine the details of its design and construction, you’ll see contributes to space heating. that for this house, its all about the Sun! Deciduous trees shade the house in summer and let the Sun’s warmth heat the house in the winter when their leaves have fallen off. Solar panels on the roof generate electricity used for lighting and appliances. Extra insulation in the roof and walls. Front overhang shades the house from the hot summer Sun, keeping it cool. Low-e windows insulate the house from fluctuations in temperature. South facing windows absorb the solarschoolhouse.org warmth of the Sun in the winter. Drought resistant landscaping A backyard clothesline lets the and water efficient irrigation Sun dry clothes energy free. uses less water than a lawn. 2 Your Solar Home Educational Reader Heavy duty blown-in recycled cellulose insulation acts as a barrier between indoor and outdoor temperatures.
    [Show full text]
  • National Survey Report of PV Power Applications in Sweden 2015
    National Survey Report of PV Power Applications in Sweden 2015 Prepared by Johan Lindahl Table of contents Table of contents .................................................................................................................. 1 Foreword ............................................................................................................................... 3 Introduction .......................................................................................................................... 4 1 Installation data .................................................................................................................... 5 1.1 Applications for Photovoltaics ................................................................................. 5 1.2 Total photovoltaic power installed .......................................................................... 5 1.2.1 Method ........................................................................................................ 5 1.2.2 The Swedish PV market ............................................................................... 5 1.2.3 Swedish PV market segments ..................................................................... 9 1.2.4 The geographical distribution of PV in Sweden .......................................... 10 1.2.5 PV in the broader Swedish energy market .................................................. 12 2 Competitiveness of PV electricity ......................................................................................... 13 2.1 Module
    [Show full text]
  • Flexible Perovskite Hybrid Solar Cells Through Organic
    FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE A Thesis Presented to The Department of Polymer Engineering of the University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Zixu Huang April 2018 i FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ ________________________ Advisor Dean of College Dr. Xiong Gong Dr. Eric J. Amis _________________________ _________________________ Faculty Reader Dean of the Graduate School Dr. Ruel McKenzie Dr. Chand K. Midha _________________________ _________________________ Department Chair Date Dr. Sadhan C. Jana ii FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ _________________________ Advisor Department Chair Dr. Xiong Gong Dr. Sadhan C. Jana _________________________ _________________________ Committee Member Dean of College Dr. Ruel McKenzie Dr. Eric J. Amis _________________________ _________________________ Committee Member Dean of the Graduate School Dr. Jiahua Zhu Dr. Chand K. Midha _________________________ Date iii ABSTRACT Organic-inorganic hybrid perovskite solar cells (PSCs) have been widely researched due to its low fabrication cost and impressive power conversion efficiency (PCE) in the past 9 years. However, most of the PSCs
    [Show full text]