Solar Cells and Fuel Cells the Technology Has Arrived
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar. -
Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Manuscript post-print for self-archiving purposes Solar Energy Materials and Solar Cells 134, 22—28 (2015) doi:10.1016/j.solmat.2014.11.017 Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With High-Temperature Stability for Thermophotovoltaic Applications. Moisés Garín a*, David Hernández a, Trifon Trifonov a,b, Ramón Alcubilla a,b a Grup de Recerca en Micro i Nanotecnologies, Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Jordi Girona 1-3 Mòdul C4, Barcelona 08034, Spain. b Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, Pascual i Vilà 15, Barcelona 08028, Spain. * E-mail: [email protected] Keywords: selective thermal emitters, thermophotovoltaics, photonic crystals, macroporous silicon ABSTRACT Selective thermal emitters concentrate most of their spontaneous emission in a spectral band much narrower than a blackbody. When used in a thermophovoltaic energy conversion system, they become key elements defining both its overall system efficiency and output power. Selective emitters' radiation spectra must be designed to match their accompanying photocell's band gap and, simultaneously, withstand high temperatures (above 1000 K) for long operation times. The advent of nanophotonics has allowed the engineering of very selective emitters and absorbers; however, thermal stability remains a challenge since 1 of 22 nanostructures become unstable at temperatures much below the melting point of the used materials. In this paper we explore an hybrid 3D dielectric-metallic structure that combines the higher thermal stability of a monocrystalline 3D Silicon scaffold with the optical properties of a thin Platinum film conformally deposited on top. -
15Th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes
A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 Prepared under Task No. WO97G400 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or `process disclosed, or represents that its use would not infringe privately owned rights. -
Perovskite Solar Cells with Large Area CVD-Graphene for Tandem
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository 1 Perovskite Solar Cells with Large-Area CVD-Graphene 2 for Tandem Solar Cells 3 Felix Lang *, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and 4 Norbert H. Nickel 5 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium 6 Photovoltaik, Kekuléstr. 5, 12489 Berlin, Germany. 7 8 ABSTRACT: Perovskite solar cells with transparent contacts may be used to compensate 9 thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach 10 stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers 11 with high electrical conductivity and optimal transparency. We address this challenge by 12 implementing large area graphene grown by chemical vapor deposition as highly transparent 13 electrode in perovskite solar cells leading to identical charge collection efficiencies. Electrical 14 performance of solar cells with a graphene-based contact reached those of solar cells with 15 standard gold contacts. The optical transmission by far exceeds that of reference devices and 16 amounts to 64.3 % below the perovskite band gap. Finally, we demonstrate a four terminal 17 tandem device combining a high band gap graphene-contacted perovskite top solar cell 18 (Eg=1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg=1.12 eV). 19 1 1 TOC GRAPHIC. 2 3 4 Hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) attracts ever-growing interest 5 for use as a photovoltaic absorber.1 Only recently, Jeon et al. -
Thin Crystalline Silicon Solar Cells Based on Epitaxial Films Grown at 165°C by RF-PECVD
CORE Metadata, citation and similar papers at core.ac.uk Provided by HAL-Polytechnique Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas To cite this version: Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas. Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD. Solar Energy Materials and Solar Cells, Elsevier, 2011, 95 (8), pp.2260-2263. <10.1016/j.solmat.2011.03.038>. <hal-00749873v3> HAL Id: hal-00749873 https://hal-polytechnique.archives-ouvertes.fr/hal-00749873v3 Submitted on 14 May 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD Romain Carioua),*, Martin Labrunea),b), P. Roca i Cabarrocasa) aLPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France bTOTAL S.A., Gas & Power, R&D Division, Tour La Fayette, 2 Place des Vosges, La Défense 6, 92 400 Courbevoie, France Keywords Low temperature, Epitaxy; PECVD; Si thin film; Solar cell Abstract We report on heterojunction solar cells whose thin intrinsic crystalline absorber layer has been obtained by plasma enhanced chemical vapor deposition at 165°C on highly doped p-type (100) crystalline silicon substrates. -
Building-Integrated Photovoltaics: an Emerging Market Executive Summary
GTM RESEARCH JULY 2010 BUILDING-INTEGRATED PHOTOVOLTAICS: AN EMERGING MARKET EXECUTIVE SUMMARY COPYRIGHT 2010, GREENTECH MEDIA INC. ALL RIGHTS RESERVED GTM RESEARCH JULY 2010 TABLE OF CONTENTS EXECUTIVE SUMMARY 7 1 INTRODUCTION 16 1.1 Introduction 16 1.2 Scope 16 1.3 Methodology 17 2 SOLAR TECHNOLOGIES, MATERIALS AND PRODUCTS 18 2.1 Introduction 18 2.2 Aesthetic and Adoption Considerations 22 2.3 Materials 24 2.3.1 The Integration of Conventional Materials 26 2.3.2 The Evolution and Integration of New Materials 27 2.4 Performance Issues 34 2.5 Building Codes and Standards 36 2.6 Products 46 2.6.1 Roof Element Products 48 2.6.2 Wall Element Products 54 2.6.3 Window Element Products 56 2.6.4 Other Products 58 3 MARKETS AND APPLICATIONS 59 3.1 Introduction 59 3.2 Market Segments 60 3.2.1 Roofs 61 3.2.2 Walls and Façades 63 3.2.3 Windows 64 3.3 Current Market Activities 64 3.3.1 Roofi ng Applications 64 3.3.2 Wall Applications 70 3.3.3 Window Applications 76 3.4 Building Types 78 3.4.1 Commercial BIPV 78 3.4.2 Residential BIPV 81 4 BIPV POLICY ASSESSMENT 86 4.1 North America 88 4.1.1 U.S. 89 4.1.2 Canada 97 4.2 Europe 99 4.2.1 Central Europe 100 4.2.2 Eastern Europe 114 4.3 Asia 116 4.3.1 Japan 116 4.3.2 Australia 118 4.3.3 China 119 4.3.4 India 121 4.3.5 South Korea 122 4.3.6 Taiwan 124 4.3.7 Malaysia 124 COPYRIGHT 2010, GREENTECH MEDIA INC ALL RIGHTS RESERVED BIPV 2010 2 GTM RESEARCH JULY 2010 5 ECONOMICS 126 5.1 Distribution Channel Developments 126 5.2 Economic Assessment 130 5.3 Market Assessment 135 6 KEY BIPV DEVELOPERS AND SUPPLIERS -
Demonstrating Solar Conversion Using Natural Dye Sensitizers
Demonstrating Solar Conversion Using Natural Dye Sensitizers Subject Area(s) Science & Technology, Physical Science, Environmental Science, Physics, Biology, and Chemistry Associated Unit Renewable Energy Lesson Title Dye Sensitized Solar Cell (DSSC) Grade Level (11th-12th) Time Required 3 hours / 3 day lab Summary Students will analyze the use of solar energy, explore future trends in solar, and demonstrate electron transfer by constructing a dye-sensitized solar cell using vegetable and fruit products. Students will analyze how energy is measured and test power output from their solar cells. Engineering Connection and Tennessee Careers An important aspect of building solar technology is the study of the type of materials that conduct electricity and understanding the reason why they conduct electricity. Within the TN-SCORE program Chemical Engineers, Biologist, Physicist, and Chemists are working together to provide innovative ways for sustainable improvements in solar energy technologies. The lab for this lesson is designed so that students apply their scientific discoveries in solar design. Students will explore how designing efficient and cost effective solar panels and fuel cells will respond to the social, political, and economic needs of society today. Teachers can use the Metropolitan Policy Program Guide “Sizing The Clean Economy: State of Tennessee” for information on Clean Economy Job Growth, TN Clean Economy Profile, and Clean Economy Employers. www.brookings.edu/metro/clean_economy.aspx Keywords Photosynthesis, power, electricity, renewable energy, solar cells, photovoltaic (PV), chlorophyll, dye sensitized solar cells (DSSC) Page 1 of 10 Next Generation Science Standards HS.ESS-Climate Change and Human Sustainability HS.PS-Chemical Reactions, Energy, Forces and Energy, and Nuclear Processes HS.ETS-Engineering Design HS.ETS-ETSS- Links Among Engineering, Technology, Science, and Society Pre-Requisite Knowledge Vocabulary: Catalyst- A substance that increases the rate of reaction without being consumed in the reaction. -
The Technologies and Performance of Solar Shingles and Transparent Solar Glass Paul Tate March 10, 2015
The Technologies and Performance of Solar Shingles and Transparent Solar Glass Paul Tate March 10, 2015 Originally prepared as a degree requirement for the UIC Master of Energy Engineering program 1 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Outline n Introduction to Building Integrated PV n Solar Shingles Technology n Solar Glass Technology n Conclusions n Questions © 2015 All Rights Reserved 2 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Building Integrated Photovoltaics (BIPV) n Building Materials & Solar Cells ¨ Roofing ¨ Glass ¨ Metal Panels ¨ Overhangs ¨ Awnings, etc. Building Integrated Photovoltaic Installation1 © 2015 All Rights Reserved 3 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate BIPV Building Integrated Photovoltaic Installation2 © 2015 All Rights Reserved 4 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate Solar Shingles n Intended for residential pitched roofs n Replace portion of asphalt shingles n Are not rack mounted n Integrate into standard roofing n Multiple technologies utilized © 2015 All Rights Reserved 5 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate CIGS Solar Shingle n Uses Copper Indium Gallium diSelenide (CIGS) thin film technology n Substrate is a proprietary polymer n Size, weight, flexibility similar to asphalt shingle CIGS Cell Schematic Diagram3 © 2015 All Rights Reserved 6 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. Tate CIGS Solar Shingles CIGS Solar Shingles Prior to Installation4 © 2015 All Rights Reserved 7 The Technologies and Performance of Solar Shingles and Transparent Solar Glass – P. -
Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ........................................................................... -
Passive Solar Design
An Educational Reader from Solar Schoolhouse WHAT’S INSIDE Take a Solar Home Tour ........................ 2 Tracking the Earth’s Path ....................... 4 Heating Things Up ............................... 5 Passive Solar Design ............................ 6 Solar Hot Water .................................. 7 What is Photovoltaics? .......................... 8 How Photovoltaics Works ...................... 9 Cooking with Sunlight ......................... 10 Solar Fountains Run by the Sun............ 12 Building a Model Solar Village .............. 13 Solar Student Builders ........................ 14 The Next Generation of Solar Homes .... 15 Solar Laundromat .............................. 15 Sun & Games ................................... 16 solarschoolhouse.org Using the Sun to Heat, Cool and Power Your Home Sponsored by: P Take a Solar Home Tour On the outside this house looks like many others. Walking past Solar-assisted hot water it, you might not even know it was a solar home. However, once system heats water and you examine the details of its design and construction, you’ll see contributes to space heating. that for this house, its all about the Sun! Deciduous trees shade the house in summer and let the Sun’s warmth heat the house in the winter when their leaves have fallen off. Solar panels on the roof generate electricity used for lighting and appliances. Extra insulation in the roof and walls. Front overhang shades the house from the hot summer Sun, keeping it cool. Low-e windows insulate the house from fluctuations in temperature. South facing windows absorb the solarschoolhouse.org warmth of the Sun in the winter. Drought resistant landscaping A backyard clothesline lets the and water efficient irrigation Sun dry clothes energy free. uses less water than a lawn. 2 Your Solar Home Educational Reader Heavy duty blown-in recycled cellulose insulation acts as a barrier between indoor and outdoor temperatures. -
National Survey Report of PV Power Applications in Sweden 2015
National Survey Report of PV Power Applications in Sweden 2015 Prepared by Johan Lindahl Table of contents Table of contents .................................................................................................................. 1 Foreword ............................................................................................................................... 3 Introduction .......................................................................................................................... 4 1 Installation data .................................................................................................................... 5 1.1 Applications for Photovoltaics ................................................................................. 5 1.2 Total photovoltaic power installed .......................................................................... 5 1.2.1 Method ........................................................................................................ 5 1.2.2 The Swedish PV market ............................................................................... 5 1.2.3 Swedish PV market segments ..................................................................... 9 1.2.4 The geographical distribution of PV in Sweden .......................................... 10 1.2.5 PV in the broader Swedish energy market .................................................. 12 2 Competitiveness of PV electricity ......................................................................................... 13 2.1 Module -
Flexible Perovskite Hybrid Solar Cells Through Organic
FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE A Thesis Presented to The Department of Polymer Engineering of the University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Zixu Huang April 2018 i FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ ________________________ Advisor Dean of College Dr. Xiong Gong Dr. Eric J. Amis _________________________ _________________________ Faculty Reader Dean of the Graduate School Dr. Ruel McKenzie Dr. Chand K. Midha _________________________ _________________________ Department Chair Date Dr. Sadhan C. Jana ii FLEXIBLE PEROVSKITE HYBRID SOLAR CELLS THROUGH ORGANIC SALT TREATED CONDUCTING POLYMER AS THE TRANSPARENT ELECTRODE Zixu Huang Thesis Approved: Accepted: _________________________ _________________________ Advisor Department Chair Dr. Xiong Gong Dr. Sadhan C. Jana _________________________ _________________________ Committee Member Dean of College Dr. Ruel McKenzie Dr. Eric J. Amis _________________________ _________________________ Committee Member Dean of the Graduate School Dr. Jiahua Zhu Dr. Chand K. Midha _________________________ Date iii ABSTRACT Organic-inorganic hybrid perovskite solar cells (PSCs) have been widely researched due to its low fabrication cost and impressive power conversion efficiency (PCE) in the past 9 years. However, most of the PSCs