3 Easy Steps to Successful Viscosity Measurement Pharmaceutical R&D Labs Test New Formulations for Viscosity to Quantify Flow Behavior Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Viscosity of Gases References
VISCOSITY OF GASES Marcia L. Huber and Allan H. Harvey The following table gives the viscosity of some common gases generally less than 2% . Uncertainties for the viscosities of gases in as a function of temperature . Unless otherwise noted, the viscosity this table are generally less than 3%; uncertainty information on values refer to a pressure of 100 kPa (1 bar) . The notation P = 0 specific fluids can be found in the references . Viscosity is given in indicates that the low-pressure limiting value is given . The dif- units of μPa s; note that 1 μPa s = 10–5 poise . Substances are listed ference between the viscosity at 100 kPa and the limiting value is in the modified Hill order (see Introduction) . Viscosity in μPa s 100 K 200 K 300 K 400 K 500 K 600 K Ref. Air 7 .1 13 .3 18 .5 23 .1 27 .1 30 .8 1 Ar Argon (P = 0) 8 .1 15 .9 22 .7 28 .6 33 .9 38 .8 2, 3*, 4* BF3 Boron trifluoride 12 .3 17 .1 21 .7 26 .1 30 .2 5 ClH Hydrogen chloride 14 .6 19 .7 24 .3 5 F6S Sulfur hexafluoride (P = 0) 15 .3 19 .7 23 .8 27 .6 6 H2 Normal hydrogen (P = 0) 4 .1 6 .8 8 .9 10 .9 12 .8 14 .5 3*, 7 D2 Deuterium (P = 0) 5 .9 9 .6 12 .6 15 .4 17 .9 20 .3 8 H2O Water (P = 0) 9 .8 13 .4 17 .3 21 .4 9 D2O Deuterium oxide (P = 0) 10 .2 13 .7 17 .8 22 .0 10 H2S Hydrogen sulfide 12 .5 16 .9 21 .2 25 .4 11 H3N Ammonia 10 .2 14 .0 17 .9 21 .7 12 He Helium (P = 0) 9 .6 15 .1 19 .9 24 .3 28 .3 32 .2 13 Kr Krypton (P = 0) 17 .4 25 .5 32 .9 39 .6 45 .8 14 NO Nitric oxide 13 .8 19 .2 23 .8 28 .0 31 .9 5 N2 Nitrogen 7 .0 12 .9 17 .9 22 .2 26 .1 29 .6 1, 15* N2O Nitrous -
On Nonlinear Strain Theory for a Viscoelastic Material Model and Its Implications for Calving of Ice Shelves
Journal of Glaciology (2019), 65(250) 212–224 doi: 10.1017/jog.2018.107 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re- use or in order to create a derivative work. On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves JULIA CHRISTMANN,1,2 RALF MÜLLER,2 ANGELIKA HUMBERT1,3 1Division of Geosciences/Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 2Institute of Applied Mechanics, University of Kaiserslautern, Kaiserslautern, Germany 3Division of Geosciences, University of Bremen, Bremen, Germany Correspondence: Julia Christmann <[email protected]> ABSTRACT. In the current ice-sheet models calving of ice shelves is based on phenomenological approaches. To obtain physics-based calving criteria, a viscoelastic Maxwell model is required account- ing for short-term elastic and long-term viscous deformation. On timescales of months to years between calving events, as well as on long timescales with several subsequent iceberg break-offs, deformations are no longer small and linearized strain measures cannot be used. We present a finite deformation framework of viscoelasticity and extend this model by a nonlinear Glen-type viscosity. A finite element implementation is used to compute stress and strain states in the vicinity of the ice-shelf calving front. -
BROOKFIELD DIAL READING VISCOMETER with Electronic Drive
BROOKFIELD DIAL READING VISCOMETER with Electronic Drive Operating Instructions Manual No. M00-151-I0614 SPECIALISTS IN THE MEASUREMENT AND CONTROL OF VISCOSITY with offices in : Boston • Chicago • London • Stuttgart • Guangzhou BROOKFIELD ENGINEERING LABORATORIES, INC. 11 Commerce Boulevard, Middleboro, MA 02346 USA TEL 508-946-6200 or 800-628-8139 (USA excluding MA) FAX 508-946-6262 INTERNET http://www.brookfieldengineering.com TABLE OF CONTENTS I. INTRODUCTION .....................................................................................5 I.1 Components .......................................................................................................5 I.2 Utilities ................................................................................................................6 I.3 Specifications .....................................................................................................6 I.4 Set-Up ................................................................................................................7 I.5 IQ, OQ, PQ .........................................................................................................7 I.6 Safety Symbols and Precautions .......................................................................8 I.7 Cleaning .............................................................................................................8 II. GETTING STARTED ..............................................................................9 II.1 Operation ...........................................................................................................9 -
Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014]
HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014] HAAKE Viscometer 7 R+ Location of Machine: Composites Lab, RFM 1218 Location of SOP and Machine Operating & Safety Manual: Composites Lab website under resources; Composites Lab TRACS site; and Hardcopy near machine. Emergency Contact: Call 911 Call EHS & Risk Management at 512-245-3616 Call Head Lab Technician, Dr. Ray Cook (office 512-245-2050) Call Dr. Jitendra S Tate (office 512-245-4872) Before using this machine: You must have permission from Dr. Tate. You must have received formal training from technician or, trained research student (designated by Dr. Tate) related to machine safety and operation. You must read and understand SOP and Machine Cleaning Manual. You must use this machine under direct supervision of Dr. Tate or, Dr. Cook or, trained research student (designated by Dr. Tate). You must have signed “Lab Rules” document with Dr. Tate. This document must be signed every semester fall, spring, and summer (as applicable). If you do NOT follow above instructions you will be held responsible for your own safety and damages. Safety Precautions: Protective Equipment: Prior to performing this procedure, the following personal protective equipment must be obtained and ready for use: Gloves, Safety Goggles, Face Mask, Lab Coat. Important Safeguards: 1. Prior to performing this procedure, the following safety equipment must be accessible and ready for use: (e.g. chemical fume hood, biological safety cabinet, laminar flow hood, chemical spill kits) Fume hood 2. All liquids should be drained to containers for chemical disposal and properly marked. 3. In the event that a hazardous material spill during this procedure, be prepared to clean with cleaner according to MSDS of materials used. -
Application Note to the Field Pumping Non-Newtonian Fluids with Liquiflo Gear Pumps
Pumping Non-Newtonian Fluids Application Note to the Field with Liquiflo Gear Pumps Application Note Number: 0104-2 Date: April 10, 2001; Revised Jan. 2016 Newtonian vs. non-Newtonian Fluids: Fluids fall into one of two categories: Newtonian or non-Newtonian. A Newtonian fluid has a constant viscosity at a particular temperature and pressure and is independent of shear rate. A non-Newtonian fluid has viscosity that varies with shear rate. The apparent viscosity is a measure of the resistance to flow of a non-Newtonian fluid at a given temperature, pressure and shear rate. Newton’s Law states that shear stress () is equal the dynamic viscosity () multiplied by the shear rate (): = . A fluid which obeys this relationship, where is constant, is called a Newtonian fluid. Therefore, for a Newtonian fluid, shear stress is directly proportional to shear rate. If however, varies as a function of shear rate, the fluid is non-Newtonian. In the SI system, the unit of shear stress is pascals (Pa = N/m2), the unit of shear rate is hertz or reciprocal seconds (Hz = 1/s), and the unit of dynamic viscosity is pascal-seconds (Pa-s). In the cgs system, the unit of shear stress is dynes per square centimeter (dyn/cm2), the unit of shear rate is again hertz or reciprocal seconds, and the unit of dynamic viscosity is poises (P = dyn-s-cm-2). To convert the viscosity units from one system to another, the following relationship is used: 1 cP = 1 mPa-s. Pump shaft speed is normally measured in RPM (rev/min). -
Investigations of Liquid Steel Viscosity and Its Impact As the Initial Parameter on Modeling of the Steel Flow Through the Tundish
materials Article Investigations of Liquid Steel Viscosity and Its Impact as the Initial Parameter on Modeling of the Steel Flow through the Tundish Marta Sl˛ezak´ 1,* and Marek Warzecha 2 1 Department of Ferrous Metallurgy, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland 2 Department of Metallurgy and Metal Technology, Faculty of Production Engineering and Materials Technology, Cz˛estochowaUniversity of Technology, Al. Armii Krajowej 19, 42-201 Cz˛estochowa,Poland; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: The paper presents research carried out to experimentally determine the dynamic viscosity of selected iron solutions. A high temperature rheometer with an air bearing was used for the tests, and ANSYS Fluent commercial software was used for numerical simulations. The experimental results obtained are, on average, lower by half than the values of the dynamic viscosity coefficient of liquid steel adopted during fluid flow modeling. Numerical simulations were carried out, taking into account the viscosity standard adopted for most numerical calculations and the average value of the obtained experimental dynamic viscosity of the analyzed iron solutions. Both qualitative and quantitative analysis showed differences in the flow structure of liquid steel in the tundish, in particular in the predicted values and the velocity profile distribution. However, these differences are not significant. In addition, the work analyzed two different rheological models—including one of our own—to describe the dynamic viscosity of liquid steel, so that in the future, the experimental stage could be replaced by calculating the value of the dynamic viscosity coefficient of liquid steel using one equation. -
Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr
Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr. Maria-Isabel Carnasciali, Dr. Samuel Daniels Abstract This project was an effort to redesign an initial prototype rotational viscometer to experimentally test whether or not viscosity values vary significantly when the geometry of the viscometer is changed. The scope of the project involved designing and building a viscometer that could vary the gap between the inner and outer cylinders, variation of the testing fluid’s temperature, and control of the device’s RPM. After weeks of planning, designing, and fabrication the new viscometer was complete. In order to control the device, monitor the sensor readings, and calculate the testing fluid’s viscosity a LabVIEW program was created. Testing on medium to high viscous fluids was completed to determine if the viscosity values and the geometry of the viscometer are dependent or independent of each other. The results did show a correlation between measured viscosity and variations in the geometry of the viscometer. More testing is required to further verify the results and properly calibrate the device. Introduction For this project a new design was conceptualized, fabricated, and tested. This new design met several criteria including, Viscosity is often referred to as a fluid’s thickness or how much it resists deformation due to an applied force. Designed for future use in ME labs; Rotational viscometers measure the amount of torque needed Designed to be durable, sustainable, and easy to to rotate an object moving through fluid at a known RPM. dissemble and clean; Using the measured torque, RPM, and dimensions of the Multiple inner cylinders for varying gap sizes; device, the viscosity can be calculated using equation 1. -
Miniav®-X Automatic Viscometer Instruction & Operation Manual
MiniAV®-X Automatic Viscometer Instruction & Operation Manual 81.2254 i CONTENTS 1 INTRODUCTION/INSTALLATION 1 The miniAV®-X Automatic Viscometer .................................................................................. 1 Measuring kinematic viscosity ............................................................................................... 2 Safety cautions ..................................................................................................................... 2 Specifications ....................................................................................................................... 4 Installation ............................................................................................................................ 4 Required installation components ............................................................................... 4 Vacuum Pump unit connections ................................................................................. 6 Bath unit connections ................................................................................................ 6 VISCPRO® for Windows® XP® ............................................................................................ 6 Installing VISCPRO® software .............................................................................................. 7 Computer requirements ............................................................................................. 7 Windows® XP® installation ....................................................................................... -
Equation of Motion for Viscous Fluids
1 2.25 Equation of Motion for Viscous Fluids Ain A. Sonin Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 2001 (8th edition) Contents 1. Surface Stress …………………………………………………………. 2 2. The Stress Tensor ……………………………………………………… 3 3. Symmetry of the Stress Tensor …………………………………………8 4. Equation of Motion in terms of the Stress Tensor ………………………11 5. Stress Tensor for Newtonian Fluids …………………………………… 13 The shear stresses and ordinary viscosity …………………………. 14 The normal stresses ……………………………………………….. 15 General form of the stress tensor; the second viscosity …………… 20 6. The Navier-Stokes Equation …………………………………………… 25 7. Boundary Conditions ………………………………………………….. 26 Appendix A: Viscous Flow Equations in Cylindrical Coordinates ………… 28 ã Ain A. Sonin 2001 2 1 Surface Stress So far we have been dealing with quantities like density and velocity, which at a given instant have specific values at every point in the fluid or other continuously distributed material. The density (rv ,t) is a scalar field in the sense that it has a scalar value at every point, while the velocity v (rv ,t) is a vector field, since it has a direction as well as a magnitude at every point. Fig. 1: A surface element at a point in a continuum. The surface stress is a more complicated type of quantity. The reason for this is that one cannot talk of the stress at a point without first defining the particular surface through v that point on which the stress acts. A small fluid surface element centered at the point r is defined by its area A (the prefix indicates an infinitesimal quantity) and by its outward v v unit normal vector n . -
List of Equipments in the Department (Chemical Engineering) Mechanical
List of Equipments in the Department (Chemical Engineering) Mechanical Operation lab Fluid Mechanics Lab Heat transfer Lab Mass Transfer lab • Cyclone Separator • Reynold’s Apparatus • Double Pipe Heat Exchanger • Tray Dryer • Plate & Frame Filter Press • Bernoulli’s Theorem Apparatus • Shell & Tube Heat Exchanger • Sieve Plate Distillation Column • Vibrating Screen • Pitot Tube Apparatus • Vertical Condenser • Liquid-Liquid Extraction • Jaw Crusher • Calibration of Orifice meter, • Computerized Control Shell & • Adsorption of CO 2 • Ball Mill Venturi meter and Rota meter Tube Heat Exchanger • Steam Distillation • Roll Crusher • Coefficient of Discharge of • Thermal Conductivity of Metal • Bubble Cap Distillation Column • Rotary Vacuum filter Orifice and Mouthpiece Bar • Cooling Tower • Fluidized Bed • Film & Drop Wise Condensation • Diffusivity Apparatus • Single Effect Evaporator • Fluidized Bed Dryer • Simple Steam Distillation • Simple Distillation • VLE Apparatus • Equilibrium Flash Distillation • Humidification & Dehumidification • Refractometer Process Control Lab Chemical Reaction Engg. Lab Fuel Combustion Energy Technology Lab Environmental Lab • Process Training Simulator with • Plug Flow Reactor • Flash & Fire Point Apparatus • BOD Incubator Modules (Software) • Isothermal Batch Reactor • Aniline Point Apparatus • pH Meter • Pressure Control System • Single Tube Packed Bed Reactor • Orsat Gas Analysis Apparatus • Sedimentation Apparatus • Flow Control System • RTD in CSTR / Mixed flow • Redwood Viscometer • UV-VIS Spectrophotometer • pH control System Reactor • Bomb Calorimeter • DO Meter • Real Time Simulator Trainer • RTD in Tubular Reactor • Smoke Point Apparatus • Digital Conductivity Meter • Level Control System • Adiabatic Batch Reactor • Temperature Control System • Distillation Column • Two Tank Interacting system • Two Tank Non-Interacting System • CSTR Control System Research Equipments • UV-Spectrophotometer • Gas Chomatography .