Miniav®-X Automatic Viscometer Instruction & Operation Manual

Total Page:16

File Type:pdf, Size:1020Kb

Miniav®-X Automatic Viscometer Instruction & Operation Manual MiniAV®-X Automatic Viscometer Instruction & Operation Manual 81.2254 i CONTENTS 1 INTRODUCTION/INSTALLATION 1 The miniAV®-X Automatic Viscometer .................................................................................. 1 Measuring kinematic viscosity ............................................................................................... 2 Safety cautions ..................................................................................................................... 2 Specifications ....................................................................................................................... 4 Installation ............................................................................................................................ 4 Required installation components ............................................................................... 4 Vacuum Pump unit connections ................................................................................. 6 Bath unit connections ................................................................................................ 6 VISCPRO® for Windows® XP® ............................................................................................ 6 Installing VISCPRO® software .............................................................................................. 7 Computer requirements ............................................................................................. 7 Windows® XP® installation ........................................................................................ 7 Installation actions ..................................................................................................... 7 Configuration diskette (First-time installation only!) .................................................... 7 Running the software ............................................................................................................. 8 Checking configuration .......................................................................................................... 9 Inital Configuration .................................................................................................... 9 Logging in ............................................................................................................... 10 Checking Instrument Settings .................................................................................. 10 Viewing/editing setup information ............................................................................. 12 Manually changing tube calibration constants ....................................................................... 13 Checking Wash and Advanced Settings ............................................................................... 14 Preparing the miniAV-X for testing ...................................................................................... 16 Inserting the miniAV-X temperature probes/reference thermometer .......................... 16 Adjusting Vacuum/Pressure settings ......................................................................... 17 Setting bath temperature ......................................................................................... 17 Training tube sensors ............................................................................................... 18 Checking wash functions ......................................................................................... 18 Calibrating the miniAV ............................................................................................ 19 Notes on computer-directed miniAV operation ........................................................ 19 2 TESTING SAMPLES WITH THE miniAV-X AUTOMATIC VISCOMETER 21 Turning on the miniAV-X ......................................................................................... 21 Testing samples ....................................................................................................... 21 Pausing a test .......................................................................................................... 24 CANNON® miniAV-X Automatic Viscometer with VISCPRO® Instruction & Operation Manual Version 1.0b— March, 2012; CANNON® Instrument Company 2139 High Tech Road • State College, PA 16803 • USA ii Resuming a test ....................................................................................................... 24 Aborting a test ........................................................................................................ 24 Concluding a test .................................................................................................... 24 Working with Instrument Groups ......................................................................................... 25 Group configuration ................................................................................................ 26 Configuring the Machine Status window to correspond with multiple-instrument place- ment ....................................................................................................................... 26 Viewing test results ............................................................................................................. 27 Creating an analysis ............................................................................................................ 27 Configuring the VI Matcher (optional) ................................................................................. 28 3 CALIBRATING THE miniAV-X 29 Calibrating temperature ....................................................................................................... 29 Calibration procedure ............................................................................................. 29 Training sensors .................................................................................................................. 30 Standard tube calibration .................................................................................................... 31 Calibration procedure ............................................................................................. 31 Saving a calibration ................................................................................................. 34 miniAV-X calibration equations ............................................................................... 35 4 USING THE miniAV-X SOFTWARE 37 VISCPRO® generic instrument interface .............................................................................. 37 Main options .......................................................................................................... 38 Security options ...................................................................................................... 39 Initial security setup ................................................................................................. 39 Adjusting Security Settings ...................................................................................... 41 Print/Print setup options .......................................................................................... 42 Analyses options ................................................................................................................. 42 Analysis types ......................................................................................................... 42 Analyses menu options ............................................................................................ 42 Window options ................................................................................................................. 44 miniAV-X module menu options .......................................................................................... 45 Configure options ................................................................................................... 45 Print Instrument and Tray Settings ........................................................................... 45 Instrument Settings .................................................................................................. 47 Tray Settings: Tube and Bath ................................................................................... 49 Tray Settings: Test ................................................................................................... 51 Tray Settings: Wash ................................................................................................ 53 Tray Settings: Advanced .......................................................................................... 56 Saving a configuration ............................................................................................. 58 Calibration .............................................................................................................. 58 Service menu options .......................................................................................................... 60 CANNON® miniAV-X Automatic Viscometer with VISCPRO® Instruction & Operation Manual Version 1.0b—March, 2012; CANNON® Instrument Company 2139 High Tech Road • State College, PA 16803 • USA iii Testing samples—software options ...................................................................................... 65 Entering sample ID information ................................................................................ 65 Selecting sample actions .........................................................................................
Recommended publications
  • BROOKFIELD DIAL READING VISCOMETER with Electronic Drive
    BROOKFIELD DIAL READING VISCOMETER with Electronic Drive Operating Instructions Manual No. M00-151-I0614 SPECIALISTS IN THE MEASUREMENT AND CONTROL OF VISCOSITY with offices in : Boston • Chicago • London • Stuttgart • Guangzhou BROOKFIELD ENGINEERING LABORATORIES, INC. 11 Commerce Boulevard, Middleboro, MA 02346 USA TEL 508-946-6200 or 800-628-8139 (USA excluding MA) FAX 508-946-6262 INTERNET http://www.brookfieldengineering.com TABLE OF CONTENTS I. INTRODUCTION .....................................................................................5 I.1 Components .......................................................................................................5 I.2 Utilities ................................................................................................................6 I.3 Specifications .....................................................................................................6 I.4 Set-Up ................................................................................................................7 I.5 IQ, OQ, PQ .........................................................................................................7 I.6 Safety Symbols and Precautions .......................................................................8 I.7 Cleaning .............................................................................................................8 II. GETTING STARTED ..............................................................................9 II.1 Operation ...........................................................................................................9
    [Show full text]
  • HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014]
    HAAKE Viscometer Standard Operating Procedure [Updated Sept 10, 2014] HAAKE Viscometer 7 R+ Location of Machine: Composites Lab, RFM 1218 Location of SOP and Machine Operating & Safety Manual: Composites Lab website under resources; Composites Lab TRACS site; and Hardcopy near machine. Emergency Contact: Call 911 Call EHS & Risk Management at 512-245-3616 Call Head Lab Technician, Dr. Ray Cook (office 512-245-2050) Call Dr. Jitendra S Tate (office 512-245-4872) Before using this machine: You must have permission from Dr. Tate. You must have received formal training from technician or, trained research student (designated by Dr. Tate) related to machine safety and operation. You must read and understand SOP and Machine Cleaning Manual. You must use this machine under direct supervision of Dr. Tate or, Dr. Cook or, trained research student (designated by Dr. Tate). You must have signed “Lab Rules” document with Dr. Tate. This document must be signed every semester fall, spring, and summer (as applicable). If you do NOT follow above instructions you will be held responsible for your own safety and damages. Safety Precautions: Protective Equipment: Prior to performing this procedure, the following personal protective equipment must be obtained and ready for use: Gloves, Safety Goggles, Face Mask, Lab Coat. Important Safeguards: 1. Prior to performing this procedure, the following safety equipment must be accessible and ready for use: (e.g. chemical fume hood, biological safety cabinet, laminar flow hood, chemical spill kits) Fume hood 2. All liquids should be drained to containers for chemical disposal and properly marked. 3. In the event that a hazardous material spill during this procedure, be prepared to clean with cleaner according to MSDS of materials used.
    [Show full text]
  • Chemistry Laboratory Safety Rules
    Orange Coast College Chemistry Laboratory Safety Rules All chemistry students must successfully pass a test on the following material before they are allowed to work in the laboratory. The test consists of 20 multiple choice questions. The importance of safety requires a high passing score. General Rules 1. No eating, drinking, chewing gum, smoking, or vaping is permitted in the laboratory. 2. Shoes (closed-toed) and appropriate clothing must be worn in the laboratory. Sandals, shorts, etc. do not provide sufficient protection from an accident. To prevent damage, avoid wearing expensive clothing in the lab. 3. Be prepared for lab. Read the procedures carefully before your scheduled lab period and follow all instructions. 4. No unauthorized experiments or unsupervised laboratory work is permitted. An unauthorized experiment is anything that is not in the experimental procedures or instructions given by your professor. 5. Visitors and children are not allowed in the laboratory. Exit the lab if you need to communicate with your visitors. 6. Clean up all chemical spills immediately, including water on the floor. 7. Report any accident, no matter how minor, to the instructor. 8. Never leave your experiment unattended when there is a hazard such as a lit burner. 9. Before you leave the laboratory, always clean your work area, lock your drawer, make certain that water and gas are off, and counters and floor are clean and dry. Safety goggles are to be removed only immediately before leaving lab. 10. Keep backpacks & personal items on the coat rack or shelves above them, to keep the aisles free of tripping hazards.
    [Show full text]
  • Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr
    Building and Validating a Rotational Viscometer Brian Cherrington & Jack Rothstein Mechanical Engineering Faculty Mentors: Dr. Maria-Isabel Carnasciali, Dr. Samuel Daniels Abstract This project was an effort to redesign an initial prototype rotational viscometer to experimentally test whether or not viscosity values vary significantly when the geometry of the viscometer is changed. The scope of the project involved designing and building a viscometer that could vary the gap between the inner and outer cylinders, variation of the testing fluid’s temperature, and control of the device’s RPM. After weeks of planning, designing, and fabrication the new viscometer was complete. In order to control the device, monitor the sensor readings, and calculate the testing fluid’s viscosity a LabVIEW program was created. Testing on medium to high viscous fluids was completed to determine if the viscosity values and the geometry of the viscometer are dependent or independent of each other. The results did show a correlation between measured viscosity and variations in the geometry of the viscometer. More testing is required to further verify the results and properly calibrate the device. Introduction For this project a new design was conceptualized, fabricated, and tested. This new design met several criteria including, Viscosity is often referred to as a fluid’s thickness or how much it resists deformation due to an applied force. Designed for future use in ME labs; Rotational viscometers measure the amount of torque needed Designed to be durable, sustainable, and easy to to rotate an object moving through fluid at a known RPM. dissemble and clean; Using the measured torque, RPM, and dimensions of the Multiple inner cylinders for varying gap sizes; device, the viscosity can be calculated using equation 1.
    [Show full text]
  • List of Equipments in the Department (Chemical Engineering) Mechanical
    List of Equipments in the Department (Chemical Engineering) Mechanical Operation lab Fluid Mechanics Lab Heat transfer Lab Mass Transfer lab • Cyclone Separator • Reynold’s Apparatus • Double Pipe Heat Exchanger • Tray Dryer • Plate & Frame Filter Press • Bernoulli’s Theorem Apparatus • Shell & Tube Heat Exchanger • Sieve Plate Distillation Column • Vibrating Screen • Pitot Tube Apparatus • Vertical Condenser • Liquid-Liquid Extraction • Jaw Crusher • Calibration of Orifice meter, • Computerized Control Shell & • Adsorption of CO 2 • Ball Mill Venturi meter and Rota meter Tube Heat Exchanger • Steam Distillation • Roll Crusher • Coefficient of Discharge of • Thermal Conductivity of Metal • Bubble Cap Distillation Column • Rotary Vacuum filter Orifice and Mouthpiece Bar • Cooling Tower • Fluidized Bed • Film & Drop Wise Condensation • Diffusivity Apparatus • Single Effect Evaporator • Fluidized Bed Dryer • Simple Steam Distillation • Simple Distillation • VLE Apparatus • Equilibrium Flash Distillation • Humidification & Dehumidification • Refractometer Process Control Lab Chemical Reaction Engg. Lab Fuel Combustion Energy Technology Lab Environmental Lab • Process Training Simulator with • Plug Flow Reactor • Flash & Fire Point Apparatus • BOD Incubator Modules (Software) • Isothermal Batch Reactor • Aniline Point Apparatus • pH Meter • Pressure Control System • Single Tube Packed Bed Reactor • Orsat Gas Analysis Apparatus • Sedimentation Apparatus • Flow Control System • RTD in CSTR / Mixed flow • Redwood Viscometer • UV-VIS Spectrophotometer • pH control System Reactor • Bomb Calorimeter • DO Meter • Real Time Simulator Trainer • RTD in Tubular Reactor • Smoke Point Apparatus • Digital Conductivity Meter • Level Control System • Adiabatic Batch Reactor • Temperature Control System • Distillation Column • Two Tank Interacting system • Two Tank Non-Interacting System • CSTR Control System Research Equipments • UV-Spectrophotometer • Gas Chomatography .
    [Show full text]
  • WHEATON Media Bottles
    > 1 Proven Tools™ for Scientific Research Mission Contact Info WHEATON is a First-Tier Best In Class Global Supplier, a highly effective > USA & Canada ...................................... 800.225.1437 marketer and a product / service innovator serving the general laboratory, life science and diagnostics packaging segments. > International ......................................... 856.825.1100 > Worldwide Fax ...................................... 856.825.1368 Our Life’s work is founded in our unrelenting passion for Customer Satisfaction and Performance Improvement making us incredibly easy to do business with. > Website ..........................................www.wheaton.com Our Associates take pride in our product, our workplace and in performance. > Street ...................................... 1501 North 10th Street Please contact us and our friendly associates will be glad to assist you. > City / State / Zip.....................Millville, NJ 08332-2038 > Country ................................................................USA > Hours ................................ 8:00 a.m. to 5:00 p.m. EST Stephen R. Drozdow President, Chief Executive Officer > 2 Table of Contents Cell Culture Adherent Culture > Incubators * .....................................................................52 > Roller Apparatus * ............................................................51 > Roller Bottles ...................................................................51 > Vented Caps ....................................................................51
    [Show full text]
  • Department of Chemical Engineering
    DISTILLATION FLASK : Made of borosilicate glass is specified dimension. Capacity: 125 ml. GRADUATED RECEIVER: Capacity : 100 ml. sub-division 1 ml. the cylinder is made of heat resistance borosilicate glass. FLASK SUPPORT ASSEMBLY BOARD: Three asbestos board on each with centre hole 32 mm, 37.5 mm and 50 mm. are provided. TEMPERATURE CONTROLLER: By solid state variable heat controller. Complete Apparatus as described above but supplied with 3 Nos. flask support boards and glassware for operation on 220/230 V, 1ph, 50 c/s, A.C. mains. SPARES FOR ABOVE DISTILLATION APPARATUS: 1. Distillation Flask, borosilicate glass, Capacity : 125 ml. packet of 2(two) pieces. 2. Receiver, 100 ml. packet of 2(two) pieces . 3. Thermometer : Mercury-in-Glass, with NABL Certificate IP – 5C, packet of two pieces.; IP – 6C, packet of two pieces; ASTM – 7C, packet of two pieces. ASTM – 8C, packet of two pieces. 4. Heating Element, packet of two pieces. …………….. 5. Flask support plate, packet of one each (Total 3 nos.) 32 mm. Centre Hole; 37.5 mm. Centre Hole; 50 mm. Centre Hole 2. FLASH POINT PENSKY MARTENS (CLOSED) CONFORMS TO : IS: 1448 & 1209 – 58, IP: 34, ASTM: D-93 SPECIAL FEATURES: Cup & Cover with ebonite handle for operating at high Temperature. For determining the flash point of petroleum products having a flash point above 120º C (48.89º F). The instrument which will give trouble free service under continuous operating conditions. The cast iron air bath is fitted with heaters for uniform heating. An enclosed safety type heater made of nichrome heating element. Temperature is controlled by Digital Temperature Indicator cum controller which ensure smooth and easy control of the temperature.
    [Show full text]
  • Physical Quantity Measured by a Vibration Viscometer (Re: JCSS Standardization of Viscosity)
    Article for the 23rd Sensing Forum Theme: Physical Quantity Measured by a Vibration Viscometer (Re: JCSS Standardization of Viscosity) Presented by: Naoto Izumo R&D Division, A&D Company, Limited October 2 ~ 3, 2006 Tsukuba Center Inc. Tsukuba, JAPAN Physical Quantity Measured by a Vibration Viscometer Subtitle: The JCSS Standardization of Viscosity Naoto Izumo R&D Division, A&D Co., Ltd. Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 Japan Abstract The objective of this article is to introduce a viscometer that utilizes a new viscosimetry measuring method. In addition, the article will recommend a new unit system, which is utilized in the vibration viscometer. Using examples, the article explains JCSS viscosity standardization and recent requirements for viscosity measurements. Keywords: Vibration Viscometer, Static Viscosity (Viscosity × Density), Viscosity JCSS, Cloud Point Introduction The following is an introduction of the vibration viscometer, a new method for measuring viscosity. In addition to providing a description of the physical quantity that is measured using the vibration viscometer, a new unit system for viscosity will be proposed. Furthermore, there is an explanation regarding the Japan Calibration Service System (JCSS) standardization of viscosity and viscosity measurements using actual examples. There is also discussion of recent requirements for measuring viscosity. History and Development of Viscosity Measurement The history of viscosity measurements is extensive and is believed to date back to when people began measuring the viscosities of engine oils with the advent of the automobile industry in the United States. In the U.S., it had become necessary to control the viscosities of engine oils as a method of maintaining the performance of engines.
    [Show full text]
  • Laboratory Equipment Used in Filtration
    KNOW YOUR LAB EQUIPMENTS Test tube A test tube, also known as a sample tube, is a common piece of laboratory glassware consisting of a finger-like length of glass or clear plastic tubing, open at the top and closed at the bottom. Beakers Beakers are used as containers. They are available in a variety of sizes. Although they often possess volume markings, these are only rough estimates of the liquid volume. The markings are not necessarily accurate. Erlenmeyer flask Erlenmeyer flasks are often used as reaction vessels, particularly in titrations. As with beakers, the volume markings should not be considered accurate. Volumetric flask Volumetric flasks are used to measure and store solutions with a high degree of accuracy. These flasks generally possess a marking near the top that indicates the level at which the volume of the liquid is equal to the volume written on the outside of the flask. These devices are often used when solutions containing dissolved solids of known concentration are needed. Graduated cylinder Graduated cylinders are used to transfer liquids with a moderate degree of accuracy. Pipette Pipettes are used for transferring liquids with a fixed volume and quantity of liquid must be known to a high degree of accuracy. Graduated pipette These Pipettes are calibrated in the factory to release the desired quantity of liquid. Disposable pipette Disposable transfer. These Pipettes are made of plastic and are useful for transferring liquids dropwise. Burette Burettes are devices used typically in analytical, quantitative chemistry applications for measuring liquid solution. Differing from a pipette since the sample quantity delivered is changeable, graduated Burettes are used heavily in titration experiments.
    [Show full text]
  • QCM Viscometer for Bioremediation and Microbial Activity Monitoring Wesley A
    304 IEEE SENSORS JOURNAL, VOL. 3, NO. 3, JUNE 2003 QCM Viscometer for Bioremediation and Microbial Activity Monitoring Wesley A. Gee, Member, IEEE, Kirsti M. Ritalahti, William D. Hunt, and Frank E. Löffler Abstract—A quartz crystal microbalance has been used to parameter eliminates the necessity of complex data interpreta- monitor the polymer production of a bacterial population in tion of samples by trained technicians. liquid medium. The increasing amount of produced polymer The aim of this study was to show that the QCM is a unique corresponds to an increase in the viscosity of the liquid, which is directly measurable as the fluid contacts the surface of the quartz and effective method to monitor a biological growth process to crystal in the sensor system. This procedure is being developed as aid in characterizing unknown bacterial populations. As a vis- a novel method for measuring microbial polymer production and cometer, this high shear rate device could be used in conjunc- growth of an environmental isolate obtained from river sediment tion with low shear rate laboratory viscosity measurement tech- contaminated with petroleum hydrocarbons. This measurement niques that currently include mechanical (rotational), capillary, technique may be used to monitor growth characteristics of unknown anaerobic bacteria when used in conjunction with falling ball, and other gravity or positive displacement methods. other currently employed microbiological test methods, such as spectrophotometry, to measure turbidity. II. DESCRIPTION OF BACTERIAL STRAIN In the presence of glucose, a novel, strictly anaerobic bacterial isolate, designated strain JEL-1, produces a viscous, as yet uniden- An unusual bacterial population, designated strain JEL-1, tified, polymer.
    [Show full text]
  • LABORATORY Viscometers
    LABORATORY VISCOMETERS www.irmeco.de Viscometer Cannon-Fenske Routine Cannon-Fenske Routine Viscometer according to ASTM D445-446, ASTM D2515, ISO 3104-3105 used for quick and easy measurement of the viscosities of trans- parent Newtonian liquids. Constant value (K) indication at +40°C and +100°C. Made of borosilicate glass, and non-alterable timing marks. Size Nominal Kinematic Art. No. No. viscometer constant viscosity range (mm2/s)/s mm2/s 25 0.002 0.5 to 2 10 15 81025 50 0.004 0.8 to 4 10 15 81050 75 0.008 1.6 to 8 10 15 81075 100 0.015 3 to 15 10 15 81100 150 0.035 7 to 35 10 15 81150 200 0.1 20 to 100 10 15 81200 300 0.25 50 to 250 10 15 81300 350 0.5 100 to 500 10 15 81350 400 1.2 240 to 1200 10 15 81400 450 2.5 500 to 2500 10 15 81450 500 8 1600 to 8000 10 15 81500 600 20 4000 to 20000 10 15 81600 All IRMECO® capillary viscometers are supplied with a Works Calibration Certificate issued in accordance with the conditions of accreditation granted by a National Metrological Register. 2 Viscometer Cannon-Fenske Routine Cannon-Fenske Opaque Cannon-Fenske Opaque Viscometer (reverse flow) according to ASTM D445-446, ASTM D2515, ISO 3104-3105 used for dark Newtonian liquids; especially suitable for liquids so dark in colour that cannot be seen in a Cannon-Fenske routine viscometer. It is also used to study shearing stress and shearing rate.
    [Show full text]
  • Chemistry 2A Lab Manual Standard Operating Procedures Winter Quarter 2018
    Chemistry 2A Lab Manual Standard Operating Procedures Winter Quarter 2018 Department of Chemistry University of California - Davis Davis, CA 95616 Student Name Locker # Laboratory Information Teaching Assistant’s Name Laboratory Section Number Laboratory Room Number Dispensary Room Number 1060 Sciences Lab Building Location of Safety Equipment Nearest to Your Laboratory Safety Shower Eye Wash Fountain Fire Extinguisher Fire Alarm Safety Chemicals Revision Date 12/1/2017 Preface Chemistry is an experimental science. Thus, it is important that students of chemistry do experiments in the laboratory to more fully understand that the theories they study in lecture and in their textbook are developed from the critical evaluation of experimental data. The laboratory can also aid the student in the study of the science by clearly illustrating the principles and concepts involved. Finally, laboratory experimentation allows students the opportunity to develop techniques and other manipulative skills that students of science must master. The faculty of the Chemistry Department at UC Davis clearly understands the importance of laboratory work in the study of chemistry. The Department is committed to this component of your education and hopes that you will take full advantage of this opportunity to explore the science of chemistry. A unique aspect of this laboratory program is that a concerted effort has been made to use environmentally less toxic or non-toxic materials in these experiments. This was not only done to protect students but also to lessen the impact of this program upon the environment. This commitment to the environment has presented an enormous challenge, as many traditional experiments could not be used due to the negative impact of the chemicals involved.
    [Show full text]