Epilepsy: the Next Generation Drugs (A Review)

Total Page:16

File Type:pdf, Size:1020Kb

Epilepsy: the Next Generation Drugs (A Review) Global Journal of Medical Research: B Pharma, Drug Discovery, Toxicology and Medicine Volume 14 Issue 4 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4618 & Print ISSN: 0975-5888 Epilepsy: The Next Generation Drugs (A Review) By Amit K. Shrivastava, Manish Dhar Dwivedi & Gulzar Alam Abstract- Seizures are common and are treated in all branches of medicine. Approximately 10% of the population will have one or more seizures during their lifetime. Seizures are symptoms that occur in acute illness, ie, provoked seizures, or in epilepsy, ie, unprovoked seizures. Antiepileptic drugs (AEDs) are pharmacologic agents used to reduce the frequency of epileptic seizures. “Antiepileptic” drug is a misnomer, because these drugs are effective as symptomatic treatment of seizures, i.e., the symptoms of epilepsy, not as treatment of epilepsy itself. Recent discoveries in molecular biology and genetics have elucidated a genetic basis for some epilepsy syndromes, which will lead to new treatments. This review include new AEDs viz; Ganaxolone, Eslicarbazepine acetate, Fluorofel-bamate, Huperzine A, Carisbamate (RWJ- 333369), Brivaracetam (ucb 34714), 2-Deoxy-D-glucose, Retigabine, T2000 , T2007, Valrocemide, Tonabersat (SB- 220453), YKP3089, Propyl isopropyl acetamide, JZP-4, ICA- 105665, NAX-5055, Perampanel and Valpromide. GJMR-B Classification : NLMC Code: WL 385, WM 402 EpilepsyTheNextGenerationDrugsAReview Strictly as per the compliance and regulations of: © 2014. Amit K. Shrivastava, Manish Dhar Dwivedi & Gulzar Alam. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Epilepsy: The Next Generation Drugs (A Review) Amit K. Shrivastava α, Manish Dhar Dwivedi σ & Gulzar Alam ρ Abstract- Seizures are common and are treated in all branches are common during the first year of life, but decline after of medicine. Approximately 10% of the population will have that (4-6). one or more seizures during their lifetime. Seizures are Epilepsy is a disease characterized by symptoms that occur in acute illness, ie, provoked seizures, or spontaneous recurrence of unprovoked seizures. in epilepsy, ie, unprovoked seizures. Antiepileptic drugs Seizures and epilepsy are different disorders, and the (AEDs) are pharmacologic agents used to reduce the frequency of epileptic seizures. “Antiepileptic” drug is a terms should not be used interchangeably. It is not misnomer, because these drugs are effective as symptomatic accurate to refer to seizures as epilepsy, although treatment of seizures, i.e., the symptoms of epilepsy, not as “seizure disorder” refers to epilepsy. Seizures are 2014 treatment of epilepsy itself. Recent discoveries in molecular symptoms, whereas epilepsy is a disease characterized biology and genetics have elucidated a genetic basis for some by recurrent seizures. Seizures can result from diseases Year epilepsy syndromes, which will lead to new treatments. This with the enduring tendency to seizures characteristic of 19 review include new AEDs viz; Ganaxolone, Eslicarbazepine epilepsy. acetate, Fluorofel-bamate, Huperzine A, Carisbamate (RWJ- During the last decade, the two mainstays of 333369), Brivaracetam (ucb 34714), 2-Deoxy-D-glucose, epilepsy treatment, epilepsy surgery and antiepileptic Retigabine, T2000 , T2007, Valrocemide, Tonabersat (SB- 220453), YKP3089, Propyl isopropyl acetamide, JZP-4, ICA- drug (AED) therapy, have made great advances, 105665, NAX-5055, Perampanel and Valpromide. resulting predominantly from advances in imaging techniques and the development of new AEDs. New I. Epilepsy: The Next Generation AEDs have been developed to provide drugs with fewer Drugs (A Review) side effects and greater efficacy than those currently available. We review some of the recent drugs which pilepsy affects approximately 50 million people acquired a well renowned position for the treatment of worldwide, with an annual incidence of 50 to 70 epilepsy. In this article, we review the mechanisms of Ecases per 100,000 population (1). Epilepsy is a action, efficacy, pharmacokinetic properties, and common chronic neurologic disorder that affects 1% to adverse reactions of the new AEDs. 3% of the population, and almost two million people in Volume XIV Issue IV Version I the United States alone (2). Seizures are more common II. Ganaxolone ) B than is generally appreciated; almost 10% of the IUPAC Name: 3 -hydroxy-3 -methyl-5 - ( population will have at least one seizure during their α β α pregnan-20-one. lifetime (3). Epileptic syndromes are defined by many factors, including type of seizure, age at onset of It is 3β-methyl analog of the neurosteroid seizures, family history, and findings at physical allopregnanolone, a metabolite of progesterone. Like examination, ictal and interictal electroencephalography other related neurosteroids, ganaxolone is not believed (EEG), and neurologic imaging. Overall, complex partial to have nuclear hormone activity and cannot be seizures are the most common seizure type across age biotransformed to metabolites with such activity. A new groups. Generalized seizures are more common in submicron particulate formulation enhances Research Medical children, and partial seizures are more common in bioavailability of ganaxolone compared to the oral adults. Incidence of partial seizures remains constant at suspension used in earlier studies (7). 20 per 100,000 population from infancy until age 65 Ganaxolone is a positive allosteric modulator of years, when it increases sharply. Incidence of GABAA receptors with potency and efficacy comparable generalized tonic-clonic seizures is high at age 1 year to those of its endogenous neurosteroid analog (15 per 100,000 population), then declines until age 10 allopregnanolone (8). Ganaxolone has protective activity to 14 years and remains at that rate until it again rises at in diverse rodent seizure models, including clonic Global Journal of age 65 years. Incidence of absence seizures is 11 per seizures induced by pentylenetetrazol (PTZ) and 100,000 population from age 1 to 10 years, with bicuculline, limbic seizures in the 6 Hz model, and uncommon onset after age 14 years. Myoclonic seizures amygdale and cocaine-kindled seizures (9,10). In addition to the anticonvulsant activity, there is evidence that neurosteroids can retard the development Author α σ ρ: Kailash Institute of Pharmacy & Management, of spontaneous recurrent seizures in some animal Gorakhpur, Pin-273209-Uttar Pradesh India. e-mails: [email protected], [email protected], models of epileptogenesis, and therefore they have [email protected] antiepileptogenic actions in such models (11). ©2014 Global Journals Inc. (US) Epilepsy: The Next Generation Drugs (A Review) Ganaxolone has been tested in more than 900 vulsant activity as felbamate without the serious adverse subjects in Phase I and Phase II studies and was found effects of the latter. In particular, the presence of a to be generally safe and well-tolerated across the dose fluorine atom in the 2-position of the propanediol chain range used (for Phase II studies, up to 1875 mg/day in in the Fluorofelbamate molecule is intended to prevent adults and up to 54 mg/kg/day in pediatric subjects), the production of atropaldehyde, the reactive toxic with divided daily dosing. The new studies show that metabolite of felbamate (16). ganaxolone at a dose of 1500 mg/day is efficacious, Preliminary evidence suggests that Fluorofel- safe and well-tolerated as adjunctive therapy for partial bamate acts, at least in part, by decreasing responses seizures for adults, with no evidence of significant to GABA, kainate and N-methyl-D-aspartate (NMDA), toxicities or weight gain in the Phase II program. and by reducing voltage-dependent sodium currents (17). Other actions are likely to contribute to its pharm- III. Eslicarbazepine Acetate ac-ological effects in animal models. Fluorofelbamate IUPAC Name: (S)-(−)-10-acetoxy-10,11 shows protective activity against ischemia- and hypoxia- induced neuronal damage in a variety of models in vivo 2014 dihydro-5H-dibenz/b,f/azepine-5-carboxamide Eslicarbazepine acetate is a third-generation, and in vitro (18). Year singleenantiomer (with one chiral center) member of the V. Huperzine A long-established family of first-line dibenz/b,f/azepine 20 AEDs. Eslicarbazepine acetate was designed with the Huperzine A is a sesquiterpene Lycopodium aim of improving efficacy and safety in comparison with alkaloid isolated from Chinese club moss (Huperzia the structurally related drugs carbazepine and serrata), also known as the Chinese folk medicine Qian oxcarbazepine. Eslicarbazepine acetate formerly known Ceng Ta, Traditionally used in China for swelling, fever as BIA 2-093, is a novel CNS-active compound. and inflammation, blood disorders and schizophrenia. Eslicarbazepine acetate shares with carbazepine and Huperzine A is used in China for the treatment of oxcarbazepine the basic chemical structure of a Alzheimer’s disease. It is classified as a dietary dibenzazepine nucleus with the 5-carboxamide supplement by the FDA. Huperzine A was active against substituent, but is structurally different at the 10,11- subcutaneous pentylenetetarzol- but not maximal position (12). electroshock-induced-induced
Recommended publications
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Fatty Acids: Essential…Therapeutic
    Volume 3, No.2 May/June 2000 A CONCISE UPDATE OF IMPORTANT ISSUES CONCERNING NATURAL HEALTH INGREDIENTS Written and Edited By: Thomas G. Guilliams Ph.D. FATTY ACIDS: Essential...Therapeutic Few things have been as confusing to both patient and health care provider as the issue of fats and oils. Of all the essential nutrients required for optimal health, fatty acids have not only been forgotten they have been considered hazardous. Health has somehow been equated with “low-fat” or “fat-free” for so long, to suggest that fats could be essential or even therapeutic is to risk credibility. We hope to give a view of fats that is both balanced and scientific. This review will cover the basics of most fats that will be encountered in dietary or supplemental protocols. Recommendations to view essential fatty acids in a similar fashion as essential vitamins and minerals will be combined with therapeutic protocols for conditions ranging from cardiovascular disease, skin conditions, diabetes, nerve related disorders, retinal disorders and more. A complete restoration of health cannot be accomplished until there is a restoration of fatty acid nutritional information among health care professionals and their patients. Fats- What are they? Dietary fats come to us from a variety of sources, but primarily in the form of triglycerides. That is, three fatty acid molecules connected by a glycerol backbone (see fatty acid primer page 3 for diagram). These fatty acids are then used as energy by our cells or modified into phospholipids to be used as cell or organelle membranes. Some fatty acids are used in lipoprotein molecules to shuttle cholesterol and fats to and from cells, and fats may also be stored for later use.
    [Show full text]
  • Valproic Acid and Its Amidic Derivatives As New Antivirals Against Alphaherpesviruses
    viruses Review Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses Sabina Andreu 1,2,* , Inés Ripa 1,2, Raquel Bello-Morales 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (I.R.); [email protected] (R.B.-M.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Academic Editor: Maria Kalamvoki Received: 14 November 2020; Accepted: 25 November 2020; Published: 26 November 2020 Abstract: Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • IJBCP International Journal of Basic & Clinical Pharmacology Antiepileptic
    Print ISSN: 2319-2003 | Online ISSN: 2279-0780 IJBCP International Journal of Basic & Clinical Pharmacology DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20161495 Review Article Antiepileptic drugs: newer targets and new drugs Vihang S. Chawan, Abhishek M. Phatak*, Kalpesh V. Gawand, Sagar V. Badwane, Sagar S. Panchal Department of Pharmacology, TNMC and BYL Nair Ch. Hospital Mumbai, Maharashtra, India ABSTRACT Received: 10 March 2016 Epilepsy is a common neurological disorder affecting 0.5-1% of the population Accepted: 15 April 2016 in India. Majority of patients respond to currently available antiepileptic drugs (AEDs), but a small percentage of patients have shown poor and inadequate *Correspondence to: response to AEDs in addition to various side effects and drug interactions while Dr. Abhishek Madan Phatak, on therapy. Thus there is a need to develop more effective AEDs in drug Email: abhishekphatak9288 resistant epilepsy which have a better safety profile with minimal adverse @gmail.com effects. The United States food and drug administration (USFDA) has approved eslicarbazepine acetate, ezogabine, perampanel and brivaracetam which have Copyright: © the author(s), shown a promising future as better AEDs and drugs like ganaxolone, intranasal publisher and licensee Medip diazepam, ICA- 105665, valnoctamide, VX-765, naluzotan are in the pipeline. Academy. This is an open- access article distributed under Keywords: Epilepsy, Newer antiepileptic drugs, Eslicarbazepine Acetate, the terms of the Creative Ezogabine (Retigabine), Perampanel, Brivaracetam, Naluzotan Commons Attribution Non- Commercial License, which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION to AEDs or those patient who have suffered from recurrent seizures, may require surgery.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • Formic Acid Acetic Acid Propionic Acid Butyric Acid Valeric Acid Caproic
    Organic Acids: Formic acid Citric acid Acetic acid Malic acid Propionic acid Benzoic acid Butyric acid Tartaric acid Valeric acid Caproic acid Oxalic acid Lactic acid Organic Bases: Pyridine Imidazole (solid) Benzimidazole Aniline TEA (tri-ethyl amine) Histidine Nitroaniline Imidazole (dissolved) Amino bases/ Nucleotides ממסים אורגניים (מכילים קשר פחמן-מימן): :(Organic Solvents (contains carbon-hydrogen bond Xylene DMF Hexane Parafine oil Ethylacetate Formamide IPA Piperidine Trizol/Trireagent Butanol SDS (solid) Acetone PMSF (Phenylmethanesulfonyl fluoride) Methanol Tween PFA RNA / DNA (kit parts that contains thioisocyanate) Toluene BME (beta mercaptoethanol) DMSO Ethylenglycol Ethanol Halogenated Organic Solvents (contains F, Cl, Br, I): ממסים אורגניים הלוגניים (מכילים F, Cl, Br, I) Chloroform (CHCl3) Methylene chloride Vinyl chloride Tetrafluoroethylene (CF2 =CF2) Trichloroethylene (CHCl=CCl2) Bromoethane Tert-Butyl bromide חומרים אנאורגניים (חומרים שהם לא חומצה/בסיס אנאורגני) Inorganic Materials (are not inorganic acid/base) LiCl Salts (such as MgCl2, CaCl) Hydrogen peroxide (H2O2) Metals (Cu, Pb, Na etc.) Ammonium thiocyanate (NH4SCN) Sodium Azide (NaN3) Ammonium azide (NH4N3) בסיסים אנאורגניים :Inorganic Bases NH3 NaOH NH4OH Ba(OH)2 NaOH (dissolved) Ca(OH)2 KOH (dissolved) CaCO3 KOH חומצות אנאורגניות: :Inorganic Acids Boric acid (H3BO3) Hydrochloric acid (HCl) Hydrofluoric acid (HF) Nitric acid (HNO3) Hydrobromic acid (HBr) Phosphoric acid (H3PO4) Perchloric acid (HClO4) Sulfuric acid (H2SO4) Hydroiodic acid (HI) Cytotoxic materials:
    [Show full text]
  • Production of Butyric Acid and Hydrogen by Metabolically Engineered Mutants of Clostridium Tyrobutyricum
    PRODUCTION OF BUTYRIC ACID AND HYDROGEN BY METABOLICALLY ENGINEERED MUTANTS OF CLOSTRIDIUM TYROBUTYRICUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoguang Liu, M.S. ***** The Ohio State University 2005 Dissertation committee: Approved by Professor Shang-Tian Yang, Adviser Professor Barbara E Wyslouzil Adviser Professor Hua Wang Department of Chemical Engineering ABSTRACT Butyric acid has many applications in chemical, food and pharmaceutical industries. The production of butyric acid by fermentation has become an increasingly attractive alternative to current petroleum-based chemical synthesis. Clostridium tyrobutyricum is an anaerobic bacterium producing butyric acid, acetic acid, hydrogen and carbon dioxide as its main products. Hydrogen, as an energy byproduct, can add value to the fermentation process. The goal of this project was to develop novel bioprocess to produce butyric acid and hydrogen economically by Clostridial mutants. Conventional fermentation technologies for butyric acid and hydrogen production are limited by low reactor productivity, product concentration and yield. In this project, novel engineered mutants of C. tyrobutyricum were created by gene manipulation and cell adaptation. Fermentation process was also optimized using immobilizing cells in the fibrous-bed bioreactor (FBB) to enhance butyric acid and hydrogen production. First, metabolic engineered mutants with knocked-out acetate formation pathway were created and characterized. Gene inactivation technology was used to delete the genes of phosphotransacetylase (PTA) and acetate kinase (AK), two key enzymes in the acetate-producing pathway of C. tyrobutyricum, through homologous recombination. The metabolic engineered mutants were characterized by Southern hybridization, enzyme assay, protein expression and metabolites production.
    [Show full text]
  • Pharmacokinetic and Pharmacodynamic Interactions Between Antiepileptics and Antidepressants Domenico Italiano University of Messina, Italy
    University of Kentucky UKnowledge Psychiatry Faculty Publications Psychiatry 11-2014 Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants Domenico Italiano University of Messina, Italy Edoardo Spina University of Messina, Italy Jose de Leon University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/psychiatry_facpub Part of the Psychiatry and Psychology Commons Repository Citation Italiano, Domenico; Spina, Edoardo; and de Leon, Jose, "Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants" (2014). Psychiatry Faculty Publications. 40. https://uknowledge.uky.edu/psychiatry_facpub/40 This Article is brought to you for free and open access by the Psychiatry at UKnowledge. It has been accepted for inclusion in Psychiatry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants Notes/Citation Information Published in Expert Opinion on Drug Metabolism & Toxicology, v. 10, Issue 11, p. 1457-1489. © 2014 Taylor & Francis Group This is an Accepted Manuscript of an article published by Taylor & Francis Group in Expert Opinion on Drug Metabolism & Toxicology in Nov. 2014, available online: http://www.tandfonline.com/10.1517/ 17425255.2014.956081 Digital Object Identifier (DOI) http://dx.doi.org/10.1517/17425255.2014.956081 This article is available at UKnowledge: https://uknowledge.uky.edu/psychiatry_facpub/40 1 This is an Accepted Manuscript of an article published by Taylor & Francis Group in Expert Opinion on Drug Metabolism & Toxicology in Nov.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
    US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds.
    [Show full text]
  • Short Chain Fatty Acids and Colon Motility in a Mouse Model of Irritable Bowel Syndrome Ilnar F
    Shaidullov et al. BMC Gastroenterol (2021) 21:37 https://doi.org/10.1186/s12876-021-01613-y RESEARCH ARTICLE Open Access Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome Ilnar F. Shaidullov1 , Dina M. Sorokina1, Farit G. Sitdikov1 , Anton Hermann2, Sayar R. Abdulkhakov1 and Guzel F. Sitdikova1* Abstract Background: Irritable bowel syndrome (IBS) is defned as a multifactorial disorder associated with visceral hypersen- sitivity, altered gut motility and dysfunction of the brain-gut axis. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. Short chain fatty acids (SCFAs) induce both inhibitory and stimulatory action on colon motility, however, their efects on the IBS model were not investigated. The aim of our study was to investigate the level of SFCAs in feces and their efects on colon motility in a mouse model of IBS. Methods: IBS model was induced in mice by intracolonic infusion of 1% acetic acid during the early postnatal period. Mice colon hypersensitivity was assessed by the threshold of the abdominal withdrawal refex in response to colorectal distention. Colon contractility was studied using proximal colon specimens in isometric conditions. Transit rates were assessed by the pellet propulsion in the isolated colon. Concentrations of SCFAs in feces were measured using gas–liquid chromatography. Results: The concentration of SCFAs in feces of IBS model mice was higher compared to the control group. Visceral sensitivity to colorectal distension and colonic transit rate were increased indicating IBS with predominant diarrhea. The frequency and amplitude of spontaneous contractions of proximal colon segments from IBS mice were higher, but carbachol induced contractions were lower compared to control.
    [Show full text]
  • A History of the Pharmacological Treatment of Bipolar Disorder
    International Journal of Molecular Sciences Review A History of the Pharmacological Treatment of Bipolar Disorder Francisco López-Muñoz 1,2,3,4,* ID , Winston W. Shen 5, Pilar D’Ocon 6, Alejandro Romero 7 ID and Cecilio Álamo 8 1 Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Madrid, Spain 2 Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), Avda. Córdoba, s/n, 28041 Madrid, Spain 3 Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal 4 Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain 5 Departments of Psychiatry, Wan Fang Medical Center and School of Medicine, Taipei Medical University, 111 Hsin Long Road Section 3, Taipei 116, Taiwan; [email protected] 6 Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés, s/n, 46100 Burjassot, Valencia, Spain; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; [email protected] 8 Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health Sciences, University of Alcalá, Crta. de Madrid-Barcelona, Km. 33,600, 28871 Alcalá de Henares, Madrid, Spain; [email protected] * Correspondence: fl[email protected] or [email protected] Received: 4 June 2018; Accepted: 13 July 2018; Published: 23 July 2018 Abstract: In this paper, the authors review the history of the pharmacological treatment of bipolar disorder, from the first nonspecific sedative agents introduced in the 19th and early 20th century, such as solanaceae alkaloids, bromides and barbiturates, to John Cade’s experiments with lithium and the beginning of the so-called “Psychopharmacological Revolution” in the 1950s.
    [Show full text]