THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein

Total Page:16

File Type:pdf, Size:1020Kb

THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 129 — 2 June 2014 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 129th issue of the Magellanic Clouds Newsletter. As always, there is a lot going on in the Magellanic Clouds as well as our research. Star clusters, star formation history, dust production, distance scales, a new look at the Magellanic Stream feeding the Milky Way... and (there is always) more... The next issue is planned to be distributed on the 1st of August. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers Age determination of fifteen old to intermediate-age Small Magellanic Cloud star clusters M.C. Parisi1, D. Geisler2, G. Carraro3, J.J. Clari´a1, E. Costa4, A.J. Grocholski5, A. Sarajedini6, R. Leiton2 and A.E. Piatti1 1Observatorio Astron´omico, Universidad Nacional de C´ordoba, Argentina 2Departamento de Astronom´ıa, Universidad de Concepci´on, Chile 3European Southern Observatory, Chile 4Universidad de Chile, Chile 5Department of Physics and Astronomy, Louisiana State University, USA 6Department of Astronomy, University of Florida, USA We present CMDs in the V and I bands for fifteen star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work Parisi et al. (2009, AJ, 138, 517), wherein we derived cluster radial velocities and metallicities from Calcium ii infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L 4, L 6 and L 110, turn out to be amongst the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2 and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible “SMC cluster age gap” (Glatt et al. 2008, AJ, 136, 1703). Using the present ages and metallicities from Parisi et al. (2009), we analyze the age distribution, age gradient and age metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr (Piatti et al. 2011, MNRAS, 417, 1559), and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than that we derived in Parisi et al. (2009), where we simply took ages available in the literature. Additionally, clusters younger than ∼ 4 Gyr now show better agreement with the bursting model of Pagel & Tautvaiˇsien˙e(1998, MNRAS, 299, 535), but we confirm that this model is not a good representation of the AMR during the intermediate-age/old period. A more complicated model is needed to explain the SMC chemical evolution in that period. Published in Astronomical Journal Available from arXiv:1402.1687 Disentangling the physical reality of star cluster candidates projected towards the inner disc of the Large Magellanic Cloud Andr´es E. Piatti1 1Observatorio Astron´omico, Universidad Nacional de C´ordoba, Laprida 854, 5000, C´ordoba, Argentina We have used Washington photometry for 90 star cluster candidates of small angular size – typically ∼ 11′′ in radius – distributed within nine selected regions in the inner disc of the Large Magellanic Cloud (LMC) to disentangle whether they are genuine physical system, and to estimate the ages for the confirmed clusters. In order to avoid a misleading interpretation of the cluster colour–magnitude diagrams (CMDs), we applied a subtraction procedure to statistically clean them from field star contamination. Out of the 90 candidate clusters studied, resulted to be genuine physical systems, whereas the remaining ones were classified as possible non-clusters since either their CMDs and/or the distribution of stars in the respective fields do not resemble those of stellar aggregates. We statistically show that ∼ (13 ± 6) per cent of the catalogued clusters in the inner disc could be possible non-clusters, independently of their deprojected distances. We derived the ages for the confirmed clusters from the fit of theoretical isochrones to the 2 cleaned cluster CMDs. The derived ages resulted to be in the age range 7.8 ≤ log t ≤ 9.2. Finally, we built cluster frequencies (CFs) for the different studied regions and found that there exists some spatial variation of the LMC CF throughout the inner disc. Particularly, the innermost field contains a handful of clusters older than ∼ 2 Gyr, while the wider spread between different CFs has taken place during the most recent 50 Myr of the galaxy lifetime. Accepted for publication in MNRAS Available from arXiv:1403.3561 CCD SDSS gr photometry of poorly studied star clusters in the Large Magellanic Cloud Andr´es E. Piatti1 1Observatorio Astron´omico, Universidad Nacional de C´ordoba, Laprida 854, 5000, C´ordoba, Argentina We present for the first time CCD SDSS gr photometry, obtained at the Gemini South telescope with the GMOS attached, of stars in the field of the poorly studied star clusters NGC 1768, HS 85, SL 676, NGC 2107, NGC 2190, and SL 866, which are distributed in the main body of the Large Magellanic Cloud. We applied a subtraction procedure to statistically clean the cluster CMDs from field star contamination. In order to disentangle cluster features from those belonging to their surrounding fields, we applied a subtraction procedure which makes use of variable cells to reproduce the field star Color–Magnitude Diagrams (CMDs) as closely as possible. We then traced their stellar density radial profiles from star counts performed over the cleaned field stars dataset and derived their radii. Using the cleaned cluster CMDs, we estimated ages and metallicities from matching theoretical isochrones computed for the SDSS system. The studied star clusters have ages from 0.1 up to 2.0 Gyr and are of slightly metal-poor metal content ([Fe/H] ≈ −0.4 dex). Accepted for publication in ISRN Astronomy and Astrophysics Available from arXiv:1403.4519 Dissecting the Spitzer color–magnitude diagrams of extreme LMC AGB stars F. Dell’Agli1,2, P. Ventura1, D.A. Garc´ıa-Hern´andez3,4, R. Schneider1, M. Di Criscienzo1, E. Brocato1, F. D’Antona1 and C. Rossi2 1INAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00040, Monte Porzio Catone (RM), Italy 2Dipartimento di Fisica, Universit`adi Roma “La Sapienza”, P.le Aldo Moro 5, 00143, Roma, Italy 3Instituto de Astrof´ısica de Canarias, V´ıaL´actea s/n, E-38200 La Laguna, Tenerife, Spain 4Dept. Astrof´ısica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain We trace the full evolution of low- and intermediate-mass stars (1 M⊙ ≤ M ≤ 8 M⊙) during the Asymptotic Giant Branch (AGB) phase in the Spitzer two-color and color–magnitude diagrams. We follow the formation and growth of dust particles in the circumstellar envelope with an isotropically expanding wind, in which gas molecules impinge upon pre-existing seed nuclei, favour their growth. These models are the first able to identify the main regions in the Spitzer data occupied by AGB stars in the Large Magellanic Cloud (LMC). The main diagonal sequence traced by LMC extreme stars in the [3.6]–[4.5] vs. [5.8]–[8.0] and [3.6]–[8.0] vs. [8.0] planes are nicely fit by carbon stars models; it results to be an evolutionary sequence with the reddest objects being at the final stages of their AGB evolution. The most extreme stars, with [3.6] − [4.5] > 1.5 mag and [3.6] − [8.0] > 3 mag, are 2.5–3 M⊙ stars surrounded by solid carbon grains. In higher mass (> 3 M⊙) models dust formation is driven by the extent of Hot Bottom Burning (HBB) – most of the dust formed is in the form of silicates and the maximum obscuration phase by dust particles occurs when the HBB experienced is strongest, before the mass of the envelope is considerably reduced. Accepted for publication in Monthly Notices of the Royal Astronomical Society Available from arXiv:1403.7340 3 The COS/UVES absorption survey of the Magellanic Stream. III: Ionization, total mass, and inflow rate onto the Milky Way Andrew J. Fox1, Bart P. Wakker2, Kathleen A. Barger3, Audra K. Hernandez2, Philipp Richter4, Nicolas Lehner3, Joss Bland-Hawthorn5, Jane C. Charlton6, Tobias Westmeier7, Christopher Thom1, Jason Tumlinson1, Toru Misawa8, J. Christopher Howk3, L. Matthew Haffner2, Justin Ely1, Paola Rodriguez-Hidalgo9,10 and Nimisha Kumari11 1Space Telescope Science Institute, USA 2University of Wisconsin-Madison, USA 3University of Notre Dame, USA 4University of Potsdam, Germany 5University of Sydney, Australia 6Pennsylvania State University, USA 7ICRAR, University of Western Australia, Australia 8Shinshu University, Japan 9York University, Canada 10University of Toronto, Canada 11Ecole´ Polytechnique, France Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way, creating the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30◦ of the 21 cm-emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross section of the Magellanic System is ∼ 11 000 square degrees, or around a quarter of the entire sky.
Recommended publications
  • The Parkes H I Survey of the Magellanic System
    A&A 432, 45–67 (2005) Astronomy DOI: 10.1051/0004-6361:20040321 & c ESO 2005 Astrophysics The Parkes H I Survey of the Magellanic System C. Brüns1,J.Kerp1, L. Staveley-Smith2, U. Mebold1,M.E.Putman3,R.F.Haynes2, P. M. W. Kalberla1,E.Muller4, and M. D. Filipovic2,5 1 Radioastronomisches Institut, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] 2 Australia Telescope National Facility, CSIRO, PO Box 76, Epping NSW 1710, Australia 3 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 4 Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA 5 University of Western Sydney, Locked Bag 1797, Penrith South, DC, NSW 1797, Australia Received 24 February 2004 / Accepted 27 October 2004 Abstract. We present the first fully and uniformly sampled, spatially complete H survey of the entire Magellanic System with high velocity resolution (∆v = 1.0kms−1), performed with the Parkes Telescope. Approximately 24 percent of the southern skywascoveredbythissurveyona≈5 grid with an angular resolution of HPBW = 14.1. A fully automated data-reduction scheme was developed for this survey to handle the large number of H spectra (1.5 × 106). The individual Hanning smoothed and polarization averaged spectra have an rms brightness temperature noise of σ = 0.12 K. The final data-cubes have an rms noise of σrms ≈ 0.05 K and an effective angular resolution of ≈16 . In this paper we describe the survey parameters, the data- reduction and the general distribution of the H gas. The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are associated with huge gaseous features – the = Magellanic Bridge, the Interface Region, the Magellanic Stream, and the Leading Arm – with a total H mass of M(H ) 8 2 4.87 × 10 M d/55 kpc ,ifallH gas is at the same distance of 55 kpc.
    [Show full text]
  • VMC – the VISTA Survey of the Magellanic System Metallicity Of
    Dr Maria‐Rosa Cioni VMC – the VISTA survey of the Magellanic System (Gal-Exgal survey) Metallicity of stellar populaons Moon of stellar populaons ESO spectroscopic survey workshop ESO-Garching, Germany, 9-10 March 2009 The VISTA survey of the Magellanic System ESO Public Survey 2009-2014 The most sensive near‐IR survey across the LMC, SMC, The team Bridge and part of the Stream M. Cioni, K. Bekki, G. Clemenni, W. de Blok, J. Emerson, C. Evans, R. de Grijs, B. Gibson, L. Girardi, M. Groenewegen, 4m Telescope V. Ivanov, M. Marconi, C. Mastropietro, B. Moore, R. Napiwotzki, T. Naylor, J. Oliveira, V. Ripepi, J. van Loon, M. Wilkinson, P. Wood 1.5 deg2 FOV United Kingdom, Italy, Belgium, Chile, France, Switzerland, South Africa, Australia http://star.herts.ac.uk/~mcioni/vmc/ 0. Observe the Magellanic System 2 ≈180 deg 3 filters ‐ YJKs 15 epochs (12 in KS and 3 in YJ; once simultaneous colours) S/N=10 at: Y=21.9, J=21.4, Ks=20.3 (Ks≈19 single epoch) Seeing 0.8 arcsec – average Spaal resoluon 0.34 pix/arcsec (0.51 arcsec instrument PSF) Service mode observing 1840 hours / 240 nights http://star.herts.ac.uk/~mcioni/vmc/ I. Derive the spaally resolved SFH Synthec diagram of a typical LMC stellar field as expected from VMC data. This field covers 1 VISTA detector! Accuracy: metallicity S/N=10 0.1 dex and age 20% in 0.1 deg2 Kerber et al 2009 http://star.herts.ac.uk/~mcioni/vmc/ II. Trace the 3D structure as a funcon of me The LMC is a few kpc thick and the SMC up to 20 kpc RR Lyrae stars are excellent distance indicators in the near‐IR First applicaon to the LMC bar to derive the LMC distance (Szewczyk et al 2008) – 0.2 kpc accuracy The structure of the Magellanic System will be measured using Cepheid variables, the red clump luminosity, the p of the red giant brach, etc.
    [Show full text]
  • The Magellanic System's Interactive Formations
    Publ. Astron. Soc. Aust., 2000, 17, 1–5. The Magellanic System’s Interactive Formations M. E. Putman Research School of Astronomy & Astrophysics, Australian National University, Private Bag, Weston Creek PO, ACT 2611, Australia [email protected] Received 1999 November 17, accepted 2000 January 7 Abstract: The interaction between the Galaxy and the Magellanic Clouds has resulted in several high-velocity complexes which are connected to the Clouds. The complexes are known as the Magellanic Bridge, an HI connection between the Large and Small Magellanic Clouds, the Magellanic Stream, a 10 100 HI lament which trails the Clouds, and the Leading Arm, a diuse HI lament which leads the Clouds. The mechanism responsible for these features formation remains under some debate, with the lack of detailed HI observations being one of the limiting factors in resolving the issue. Here I present several large mosaics of HI Parkes All-Sky Survey (HIPASS) data which show the full extent of the three Magellanic complexes at almost twice the resolution of previous observations. These interactive features are connected, but unique in their spatial and velocity distribution. The dierences may shed light on their origin and present environment. Dense clumps of HI along the sightline to the Sculptor Group, which may or may not be associated with the Magellanic complexes, are also discussed. Keywords: intergalactic medium — Local Group — Magellanic Clouds — galaxies: HI 1 Introduction this by providing a marked improvement in spatial Almost every galaxy in the Universe is either resolution compared to previous HVC surveys (see currently, or was at some time, part of an interacting Putman & Gibson 1999), and revealing previously system.
    [Show full text]
  • R. Wagner-Kaiser
    R. Wagner-Kaiser Email: [email protected] • Phone: (269) 274-1318 LinkedIn: linkedin.com/in/rawagnerkaiser • GitHub: github.com/rwk506 Webpage: astro.ufl.edu/~rawagnerkaiser/Home.html Stellar Populations • Globular Clusters & Multiple Populations • Variable Stars My interests in astronomy are centered around utilizing the power of stellar populations to learn more about the characteristics of galaxies, from the Milky Way to the Local Group to even further away external galaxies. Through observations of star clusters, variable stars, and resolved galactic stellar populations, I hope to learn more about the formation and evolution of galaxies in our universe. Education University of Florida 2011 – Present M.S. Astronomy: 2013 Gainesville, FL PhD Astronomy: 2016; GPA: 4.0 Dissertation: Bayesian Analysis of Globular Clusters – using a sophisticated Bayesian statistical technique to compare multi- dimensional theoretical models to observed data to determine the most likely parameters that describe object of interest. Vassar College 2006 – 2010 B.A. Physics, B.A. Astronomy (2010) Poughkeepsie, NY Minor equivalent in Mathematics GPA: 3.62; Graduated with Honors First Author Papers • Submitted (10.6.16): Wagner-Kaiser, R. and Sarajedini, A., 2016, MNRAS, Ages in the Local Solar Neighborhood from the JK turndown. • Accepted (2.28.17): Wagner-Kaiser, R., Sarajedini, A., von Hippel, T., Anderson, J., et al., 2016, MNRAS, The ACS Survey of Galactic Globular Clusters XIV: Bayesian Analysis of “Single” Stellar Populations of 69 Globular Clusters. • Accepted (12.5.16): Wagner-Kaiser, R. and Sarajedini, A., 2016, MNRAS, The properties of the Magellanic Bridge Based on OGLE IV Photometry of RR Lyrae Stars. • Wagner-Kaiser, R., Stenning, D., Robinson, E., von Hippel, T., Sarajedini, A., van Dyk, D.
    [Show full text]
  • Hydrogen Clouds in the Magellanic System
    Hydrogen clouds in the Magellanic System Bi-Qing For ICRAR/UWA The Magellanic System (HI) Leading Arm(s) LMC SMC Magellanic Stream Magellanic Bridge Image credit: Nidever et al. (2010) 2 Leading Arm(s) & Magellanic Stream Studies For et al. (2013): GASS For et al. (2014): GASS+ATCA ● HVCs catalogs (morphology – head-tail etc) ● Investigating the the effects of interaction with the Galactic halo ● Formation mechanism and compare to simulations 33 Narrow line width HVCs • Narrow line width HVCs • Cold: how do cold clouds survive in the hot halo? For et al. (2013) 44 Two phase medium (stable) Cold cloud is surrounded by a warm envelope Follow up observation with ATCA: For et al (2016) 55 Probing Environmental Effect • Deriving the physical parameters and properties • Resolving multiphase structure 66 GASS 77 ATCA ● Red: 12% peak sensitivity ● P/k = nTk ● Tk: Linewidth ● n: assumed distance, measured angular diameter ● Phase diagram: P/k vs n 88 HVC phase diagram Filled: 25kpc Non-filled: 50 pc Wolfire et al. (1995) Stable two-phase medium: Pmin< P < Pmax 99 Halo Environment as a Function of Galactic Latitude • Assuming hydrostatic equilibrium: thermal P = external halo thermal P • Galactic latitude proxy of z • Clouds reside in a denser halo environment at higher Galactic latitude 1010 • • Decreasing z Evidence LA I (Venzmer et al. 2013) LAEvidence I(Venzmer HI clouds compact possibleof evidence First Denser In short distance gradientdistance in the LA using region 11 11 GASKAP: Milky Way disk + Magellanic System ● PIs: J. Dickey + N. McClure-Griffiths ● 21 cm line + three 18 cm lines of OH molecule ● HI absorption and emission ● Magellanic System: 13020 sq deg ● resolution (~30 arcsec), velocity line width (1 km/s) 12 GASKAP: Magellanic System Figure: The GASKAP MS survey area with axes labeled in MS coordinates and Hi column densities from the LAB survey in the background (Nidever et al.
    [Show full text]
  • Properties of Stellar Generations in Globular Clusters and Relations With
    Astronomy & Astrophysics manuscript no. carretta c ESO 2018 November 9, 2018 Properties of stellar generations in Globular Clusters and relations with global parameters ⋆ E. Carretta1, A. Bragaglia1, R.G. Gratton2, A. Recio-Blanco3, S. Lucatello2,4, V. D’Orazi2, and S. Cassisi5 1 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy 2 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3 Laboratoire Cassiop´ee UMR 6202, Universit`ede Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France 4 Excellence Cluster Universe, Technische Universit¨at M¨unchen, Boltzmannstr. 2, D-85748, Garching, Germany 5 INAF-Osservatorio Astronomico di Collurania, via M. Maggini, I-64100 Teramo, Italy Received .....; accepted ..... ABSTRACT We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide globular clusters, as the stellar aggregates showing the presence of the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of globular clusters is fairly independent of their population, suggesting that it is imprinted by the formation mechanism, and only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs.
    [Show full text]
  • Interstellar Media in the Magellanic Clouds and Other Local Group Dwarf Galaxies
    Interstellar Media in the Magellanic Clouds and other Local Group Dwarf Galaxies Eva K. Grebel1 1Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany Abstract. I review the properties of the interstellar medium in the Magellanic Clouds and Local Group dwarf galaxies. The more massive, star-forming galaxies show a complex, multi-phase ISM full of shells and holes ranging from very cold phases (a few 10 K) to extremely hot gas (> 106 K). In environments with high UV radiation fields the formation of molecular gas is suppressed, while in dwarfs with low UV fields molecular gas can form at lower than typical Galactic column densities. There is evidence of ongoing interactions, gas accretion, and stripping of gas in the Local Group dwarfs. Some dwarf galaxies appear to be in various stages of transition from gas-rich to gas-poor systems. No ISM was found in the least massive dwarfs. 1 Introduction There are currently 36 known and probable galaxy members of the Local Group within a zero-velocity surface of 1.2 Mpc. Except for the three spiral galaxies M31, Milky Way, and M33, the irregular Large Magellanic Cloud, and the small elliptical galaxy M32 all other galaxies in the Local Group are dwarf galaxies with MV > −18 mag. In this review I will concentrate on the properties of the interstellar medium (ISM) of the Magellanic Clouds and the Local Group dwarf galaxies, moving from gas-rich to gas-poor objects. Recent results from telescopes, instruments, and surveys such as NANTEN, ATCA, HIPASS, JCMT, ISO, ROSAT, FUSE, ORFEUS, STIS, Keck, and the VLT are significantly advancing our knowledge of the ISM in nearby dwarfs and provide an unprecedented, multi-wavelength view of its different phases.
    [Show full text]
  • E+FW Abstract Book
    Elizabeth and Frederick White Conference on the Magellanic System SCIENTIFIC ORGANISING COMMITTEE Dr. Erik Muller ATNF, CSIRO Dr. Bärbel Koribalski ATNF, CSIRO Prof. Yasuo Fukui University of Nagoya Dr. Russell Cannon Anglo-Australian Observatory Prof. Lister Staveley-Smith Univeristy of Western Australia Dr. Kenji Bekki University of New South Wales LOCAL ORGANISING COMMITTEE Dr. Erik Muller ATNF, CSIRO Deanna Matthews La Trobe University / ATNF, CSIRO Vicki Fraser ATNF, CSIRO Miroslav Filipovic University of Western Sydney Elizabeth and Frederick White Conference on the Magellanic System PARTICIPANT LIST Bekki Kenji Univeristy of New South Wales Besla Gurtina Harvard-Smithsonian CfA Bland-Hawthorn Joss Anglo-Australian Observatory Bolatto Alberto UCB Bot Caroline California Institute of Technology Braun Robert Australia Telescope National Facility Brooks Kate Australia Telescope National Facility Cannon Russell Anglo-Australian Observatory Carlson Lynn Johns Hopkins University Cioni Maria-Rosa Institute for Astronomy, University of Edinburgh Da Costa Gary Research School of Astronomy & Astrophysics ANU Doi Yasuo University of Tokyo Ekers Ron Australia Telescope National Facility Filipovic Miroslav University of Western Sydney Fukui Yasuo Nagoya University Gaensler Bryan University of Sydney Harris Jason Steward Observatory Hitschfeld Marc University of Colgne Hughes Annie Centre for Astrophysics & Supercomputing, Swinburne University Hurley Jarrod Centre for Astrophysics & Supercomputing, Swinburne University Francisco Ibarra Javier
    [Show full text]
  • Arxiv:2007.00341V2 [Astro-Ph.GA] 7 Oct 2020
    MNRAS 000,1–23 () Preprint 8 October 2020 Compiled using MNRAS LATEX style file v3.0 A Search for star clusters in the outskirts of the Large Magellanic Cloud: indication of clusters in the age gap.¢ M. Gatto1,2,y V. Ripepi1, M. Bellazzini3, M. Cignoni4, M.-R. L. Cioni5, M. Dall’Ora1, G. Longo2, M. Marconi1, P. Schipani1, M. Tosi3 1 INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131, Naples, Italy 2 Dept. of Physics, University of Naples Federico II, C.U. Monte Sant’Angelo, Via Cinthia, 80126, Naples, Italy 3 INAF-Osservatorio di Astrofisica e Scienza dello Spazio, Via Gobetti 93/3, I-40129 Bologna, Italy 4 Physics Departement, University of Pisa, Largo Bruno Pontecorvo, 3, I-56127 Pisa, Italy 5 Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The YMCA (Yes, Magellanic Clouds Again) and STEP (The SMC in Time: Evolution of a Prototype interacting late-type dwarf galaxy) projects are deep 6,8 photometric surveys carried out with the VLT Survey Telescope (VST) and devoted to study the outskirts of the Magellanic System. A main goal of YMCA and STEP is to identify candidate stellar clusters and complete their census out to the outermost regions of the Magellanic Clouds. We adopted a specific over-density search technique coupled with a visual inspection of the color magnitude diagrams (CMDs) to select the best candidates and estimate their ages. To date, we analysed a region of 23 sq. deg. in the outskirts of the Large Magellanic Cloud, detecting 85 candidate cluster candidates, 16 of which have estimated ages falling in the so called “age gap".
    [Show full text]
  • Discovery of O Stars in the Tidal Magellanic Bridge: Stellar
    Astronomy & Astrophysics manuscript no. main ©ESO 2020 November 17, 2020 Discovery of O stars in the tidal Magellanic Bridge Stellar parameters, abundances, and feedback of the nearest metal-poor massive stars and their implication for the Magellanic System ecology Varsha Ramachandran, L. M. Oskinova, and W.-R. Hamann Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany e-mail: [email protected] Received <date> / Accepted <date> ABSTRACT The Magellanic Bridge stretching between the Small and the Large Magellanic Cloud (SMC and LMC), is the nearest tidally stripped intergalactic environment. The Bridge has a significantly low average metallicity of Z . 0:1Z . Here we report the first discovery of O-type stars in the Magellanic Bridge. Three massive O stars were identified thanks to the archival spectra obtained by the ESO’s Very Large Telescope FLAMES instrument. We analyze the spectra of each star using the advanced non-LTE stellar atmosphere model PoWR, which provides the physical parameters, ionizing photon fluxes, and surface abundances. The ages of the newly discovered O stars suggest that star formation in the Bridge is ongoing. Furthermore, the discovery of O stars in the Bridge implies that tidally stripped galactic tails containing low density but highly dynamical gas are capable of producing massive O stars. The multi-epoch spectra indicate that all three O stars are binaries. Despite their spatial proximity to each other, these O stars are chemically distinct. One of them is a fast-rotating giant with nearly LMC-like abundances. The other two are main-sequence stars that rotate extremely slowly and are strongly metal depleted.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 123 — 3 June 2013 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Figure 1: Interstellar extinction map (left) and inferred molecular cloud map (right) around the Tarantula Nebula and Southern Molecular Ridge, based on VMC near-IR photometry of red clump stars – see Tatton et al. (2013) for more details. 1 Editorial Dear Colleagues, It is my pleasure to present you the 123rd issue of the Magellanic Clouds Newsletter. You have all been very busy. There are a lot of papers on pulsar(system)s, the Tarantula region, the Magellanic Stream and Bridge, and an exciting new proper motion study of the LMC. There is a fantastic opportunity to work with Sally Oey in Michigan – don’t miss it! The next issue is planned to be distributed on the 1st of August, 2013. Editorially Yours, Jacco van Loon 2 Refereed Journal Papers The VMC survey VII. Reddening map of the 30 Doradus field and the structure of the cold interstellar medium B.L. Tatton1, J.Th. van Loon1, M.-R. Cioni2,3, G. Clementini4, J.P. Emerson5, L. Girardi6, R. de Grijs7, M.A.T. Groenewegen8, M. Gullieuszik8, V.D. Ivanov9, M.I. Moretti4, V. Ripepi10 and S. Rubele6 1Astrophysics Group, Lennard-Jones Laboratories, Keele University, ST5 5BG, United Kingdom 2University of Hertfordshire, Physics Astronomy and Mathematics, Hatfield AL10 9AB, United Kingdom 3University Observatory Munich, Scheinerstraße 1, D-81679 M¨unchen, Germany 4INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy 5Astronomy Unit, School of Physics & Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom 6INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 7Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871, China 8Royal Observatory of Belgium, Ringlaan 3, 1180 Ukkel, Belgium 9European Southern Observatory, Santiago, Av.
    [Show full text]
  • A Synoptic View of the Magellanic Clouds: VMC, Gaia, and Beyond Held at ESO Headquarters, Garching, Germany, 9–13 September 2019
    Astronomical News DOI: 10.18727/0722-6691/5211 Report on the ESO Workshop A Synoptic View of the Magellanic Clouds: VMC, Gaia, and Beyond held at ESO Headquarters, Garching, Germany, 9–13 September 2019 Maria-Rosa L. Cioni 1 In this workshop, the most interesting of the system and use stellar population Martino Romaniello 2 discoveries emerging from the VMC and diagnostics across the Hertzsprung- Richard I. Anderson 2 other contemporary multi-wavelength Russell diagram with unprecedented pre- surveys were discussed. These results cision. Most of these developments will have cemented stellar populations as culminate in the early 2020s and discus- 1 Leibniz-Institut für Astrophysik Potsdam important diagnostics of galaxy proper- sions on how to formulate the most rele- (AIP), Germany ties. Cepheid stars have, for example, vant scientific questions are already 2 ESO revealed the three-dimensional structure advanced. of the system, giant stars have shown significantly extended populations, and The year 2019 marked the quincente- blue horizontal branch stars have indi- Summaries of talks and highlights from nary of the arrival in the southern hemi- cated protuberances and possible sessions sphere of Ferdinand Magellan, the streams in the outskirts of the galaxies. namesake of the Magellanic Clouds, The complementary view provided by The workshop revolved around eight our nearest example of dwarf galaxies RR Lyrae stars shows instead regular and scientific sessions at which a total of in the early stages of a minor merging ellipsoidal systems. The analysis of the 64 talks were presented and a summary event. These galaxies have been firmly star formation history suggests that the is given below.
    [Show full text]