Thesis Derives from Three Projects Conducted Dur- Ing My Ph.D, Focusing on Both the Milky Way and the Magellanic Clouds

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Derives from Three Projects Conducted Dur- Ing My Ph.D, Focusing on Both the Milky Way and the Magellanic Clouds GALACTICSTRUCTUREWITHGIANTSTARS james richard grady Corpus Christi College University of Cambridge March 2021 This dissertation is submitted for the degree of Doctor of Philosophy James Richard Grady: Galactic Structure with Giant Stars, Corpus Christi College University of Cambridge, © March 2021 ABSTRACT The content of this thesis derives from three projects conducted dur- ing my Ph.D, focusing on both the Milky Way and the Magellanic Clouds. I deploy long period variables, especially Miras, as chronome- ters to study the evolution of Galactic structure over stellar age. I study red giants in the Magellanic Clouds, assign them photometric metallicities and map large scale trends both in their chemistry and proper motions. In Chapter 1 I provide an overview of the historical observations that underpin our current understanding of the Galactic components. Specifically, I detail those pertaining to the Galactic bulge, the Galactic disc and the Magellanic Clouds as it is these that constitute the main focus of the work in this thesis. In Chapter 2 I collate a sample of predominately oxygen-rich Mira variables and show that gradients exists in their pulsation period pro- files through the Galaxy. Under the interpretation that the period of Miras correlates inversely with their stellar age, I find age gradients consistent with the inside-out disc formation scenario. I develop such analysis further in Chapter 3: seizing on the Miras provided by Gaia DR2, I observe them to trace the Galactic bulge/bar and disc. With the novel ability to slice both components chronolog- ically at once, the old disc is seen to be stubby; radially constricted and vertically extended. The younger disc is vertically thinner and more extensive radially, providing further observational evidence for inside-out formation of the Milky Way disc. The longer period and hence younger bulge Miras show a clear bar-like morphology bear- ing the classic X-shape. The old, short period bulge Miras appear to constitute a separate population, decoupled from the inclined bar with little evidence for having buckled. Chapter 4 details a chemo-kinematic analysis of red giants residing in the Magellanic Clouds. I utilise optical and infra-red photometry to assign photometric metallicity estimates to the giants. The metal- licity structure in the larger Cloud correlates with known stellar over- densities induced from historic perturbations. I observe the smaller Cloud to be disrupting, identifying stellar debris trailing the dwarf. iii DECLARATION This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared below and specified in the text1: • Chapter 2 is based on the work published under the title: "Age gradients throughout the Galaxy with long-period variables" in Monthly Notices of the Royal Astronomical Society; Grady, Be- lokurov, and Evans (2019). • Chapter 3 is based on the work published under the title "Age demographics of the Milky Way disc and bulge" in Monthly Notices of the Royal Astronomical Society; Grady, Belokurov, and Evans (2020). • Chapter 4 is based on the work published under the title "Magel- lanic Mayhem: Metallicities and Motions" in The Astrophysical Journal; Grady, Belokurov, and Evans (2021). It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qual- ification at the University of Cambridge or any other University or similar institution. I further state that no substantial part of my disser- tation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University of similar institution. It does not exceed the prescribed 60, 000 word limit. Cambridge, March 2021 James Richard Grady 1 Where appropriate, I maintain the use of the proverbial "we" so as to be consistent with the published works that form this thesis. For Dad ACKNOWLEDGMENTS I would like to sincerely thank my supervisors, Prof. N. Wyn Evans and Prof. Vasily Belokurov, for their continual guidance throughout my time studying in Cambridge. Both have provided me with a great deal of advice and encouragement in my studies, layered with good humour. I would also like to thank all members of the Streams group. Their suggestions and comments have always been fruitful and the group meetings have provided stimulating topics of discussion and inquiry. I thank Sergey Koposov for maintaining the Whole Sky Database, a truly invaluable resource for any astronomer. I further thank the ad- ministrative staff within the Institute for their prompt and effective support. Acknowledgement is owed to the Science and Technologies Facilities Council who provided the funding for my research. I would like to thank my fellow students at the Institute; I have made some great friends. Many an evening we have spent laughing and conversing in some of Cambridge’s fine pubs! A necessary anti- dote to the rigours of research. Further thanks goes to Corpus Christi College for hosting me dur- ing my time here in Cambridge. I have enjoyed partaking in the unique collegiate life offered by this University. It has also been a pleasure to represent the College in my sporting efforts, having had great fun in turning out regularly for the football and cricket teams alongside a thoroughly enjoyed spell of rowing. Above all, I thank my family. Unfailing in your love and support, you have kept me going. Thank you. vii CONTENTS 1 introduction1 1.1 The Milky Way in Context 1 1.2 The Galactic Bulge 2 1.2.1 Bulge Morphology 3 1.2.2 Stellar Ages in the Bulge 4 1.2.3 Bulge Metallicity Distribution 5 1.2.4 Bulge Kinematics 6 1.3 The Galactic Disc 8 1.3.1 Disc Dichotomy 9 1.3.2 Formation of the Discs 11 1.3.3 Disc Substructure 13 1.4 The Magellanic Clouds 14 1.4.1 Large Magellanic Cloud 15 1.4.2 Small Magellanic Cloud 17 1.4.3 Magellanic Interactions 17 1.5 Long Period Variables 19 1.5.1 What is a Long Period Variable? 19 1.5.2 Useful characteristics of Long Period Variables 20 1.6 Thesis Structure 21 2 age gradients throughout the galaxy with long period variables 23 2.1 Data 23 2.1.1 Mira Selection 24 2.1.2 O-rich LPV Distributions 27 2.1.3 Distance Determination and Validation 28 2.2 Galactic Age Gradients 31 2.2.1 Miras outside of the Galactic disc 36 2.2.2 Satellite Galaxy and Globular Cluster Associa- tions 41 2.3 Summary 44 3 age demographics of the milky way disc and bulge 47 3.1 Data 47 3.1.1 Selecting Miras 48 3.1.2 Miras in the Large Magellanic Cloud 49 3.1.3 Galactic Sample 50 3.2 Stellar Density Profiles 52 3.2.1 Modelling the Galactic Disc and Bulge 52 3.2.2 Simulated data 56 3.3 Results 58 ix x contents 3.3.1 Miras in the Disc 59 3.3.2 Miras in the Bulge 65 3.4 Summary 72 4 magellanic mayhem: metallicities and motions 75 4.1 Data 75 4.2 Regression Analysis 80 4.2.1 Regression Performance 83 4.2.2 Regression Predictions 83 4.3 Metallicity Maps 86 4.3.1 Metallicity Gradients 91 4.3.2 Slicing the Clouds by Metallicity 98 4.3.3 SMC shape and disruption 102 4.3.4 Old stellar Bridge 108 4.4 Summary 112 5 conclusions and outlook 115 5.1 Conclusions 115 5.2 Outlook 117 a appendix 121 a.1 Mira Cluster Associations 121 a.2 Density profile likelihood 122 a.3 Model M2 Residuals 123 bibliography 125 LISTOFFIGURES Figure 1.1 APOGEE giant abundance trends 10 Figure 1.2 Magellanic main sequence stars and red gi- ants. 16 Figure 1.3 Epoch photometry of Gaia LPVs. 20 Figure 2.1 Selection criteria for O-rich LPV candidates from the CRTS and ASAS-SN data sets. 25 Figure 2.2 Period-luminosity diagram for Gaia LPVs in the LMC. 26 Figure 2.3 Visual amplitude histograms of selected and rejected O-rich candidates. 27 Figure 2.4 Spatial distributions of O-rich LPVs in CRTS and ASAS-SN. 28 Figure 2.5 Distance estimate validation using the LMC and the Sgr Stream. 29 Figure 2.6 Location of O-rich LPVs in Galactocentric cylin- drical coordinates. 30 Figure 2.7 Dependence of Mira age with period using Galac- tic and Magellanic clusters. 31 Figure 2.8 Spatial footprint of O-rich LPVs as a function of pulsation period. 32 Figure 2.9 Profiles of median LPV pulsation period through the Galaxy. 33 Figure 2.10 Period profiles of ASAS-SN stars through the disc at different heights from the plane. 34 Figure 2.11 Decomposition of LPVs sub-groups in on-sky projection. 37 Figure 2.12 Difference in spatial extent between short and long period LPVs. 38 Figure 2.13 Distribution of old, short-period LPV stars in the Milky Way halo as viewed by CRTS. 40 Figure 2.14 Great circle counts of LPVs. 41 Figure 2.15 Dwarf galaxy and globular cluster associations. 42 Figure 3.1 Gaia+2MASS LPVs in Galactic projection. 48 Figure 3.2 Mira selection in Gaia DR2. 49 Figure 3.3 Mira period-luminosity diagram. 50 Figure 3.4 Miras in the Galaxy at different periods. 51 Figure 3.5 Luminosity function of Mira sample. 54 Figure 3.6 Simulated data modelling. 57 xi xii List of Figures Figure 3.7 Marginalised posterior distributions for den- sity model parameters. 58 Figure 3.8 Evolution of recovered model parameters as a function of Mira pulsation period 60 Figure 3.9 Model residuals in Galactocentric (X, Y) pro- jection for disc+bulge.
Recommended publications
  • The Parkes H I Survey of the Magellanic System
    A&A 432, 45–67 (2005) Astronomy DOI: 10.1051/0004-6361:20040321 & c ESO 2005 Astrophysics The Parkes H I Survey of the Magellanic System C. Brüns1,J.Kerp1, L. Staveley-Smith2, U. Mebold1,M.E.Putman3,R.F.Haynes2, P. M. W. Kalberla1,E.Muller4, and M. D. Filipovic2,5 1 Radioastronomisches Institut, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] 2 Australia Telescope National Facility, CSIRO, PO Box 76, Epping NSW 1710, Australia 3 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA 4 Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA 5 University of Western Sydney, Locked Bag 1797, Penrith South, DC, NSW 1797, Australia Received 24 February 2004 / Accepted 27 October 2004 Abstract. We present the first fully and uniformly sampled, spatially complete H survey of the entire Magellanic System with high velocity resolution (∆v = 1.0kms−1), performed with the Parkes Telescope. Approximately 24 percent of the southern skywascoveredbythissurveyona≈5 grid with an angular resolution of HPBW = 14.1. A fully automated data-reduction scheme was developed for this survey to handle the large number of H spectra (1.5 × 106). The individual Hanning smoothed and polarization averaged spectra have an rms brightness temperature noise of σ = 0.12 K. The final data-cubes have an rms noise of σrms ≈ 0.05 K and an effective angular resolution of ≈16 . In this paper we describe the survey parameters, the data- reduction and the general distribution of the H gas. The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are associated with huge gaseous features – the = Magellanic Bridge, the Interface Region, the Magellanic Stream, and the Leading Arm – with a total H mass of M(H ) 8 2 4.87 × 10 M d/55 kpc ,ifallH gas is at the same distance of 55 kpc.
    [Show full text]
  • The Chemodynamics of Prograde and Retrograde Milky Way Stars Georges Kordopatis (Γιωργ´ Oς Koρδoπατη´ Σ), Alejandra Recio-Blanco, Mathias Schultheis, and Vanessa Hill
    A&A 643, A69 (2020) Astronomy https://doi.org/10.1051/0004-6361/202038686 & c G. Kordopatis et al. 2020 Astrophysics The chemodynamics of prograde and retrograde Milky Way stars Georges Kordopatis (Γιωργ´ o& Koρδoπατη´ &), Alejandra Recio-Blanco, Mathias Schultheis, and Vanessa Hill Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France e-mail: [email protected] Received 18 June 2020 / Accepted 11 September 2020 ABSTRACT Context. The accretion history of the Milky Way is still unknown, despite the recent discovery of stellar systems that stand out in terms of their energy-angular momentum space, such as Gaia-Enceladus-Sausage. In particular, it is still unclear how these groups are linked and to what extent they are well-mixed. Aims. We investigate the similarities and differences in the properties between the prograde and retrograde (counter-rotating) stars and set those results in context by using the properties of Gaia-Enceladus-Sausage, Thamnos/Sequoia, and other suggested accreted populations. Methods. We used the stellar metallicities of the major large spectroscopic surveys (APOGEE, Gaia-ESO, GALAH, LAMOST, RAVE, SEGUE) in combination with astrometric and photometric data from Gaia’s second data-release. We investigated the presence of radial and vertical metallicity gradients as well as the possible correlations between the azimuthal velocity, vφ, and metallicity, [M=H], as qualitative indicators of the presence of mixed populations. Results. We find that a handful of super metal-rich stars exist on retrograde orbits at various distances from the Galactic center and the Galactic plane. We also find that the counter-rotating stars appear to be a well-mixed population, exhibiting radial and vertical metallicity gradients on the order of ∼ − 0:04 dex kpc−1 and −0:06 dex kpc−1, respectively, with little (if any) variation when different regions of the Galaxy are probed.
    [Show full text]
  • VMC – the VISTA Survey of the Magellanic System Metallicity Of
    Dr Maria‐Rosa Cioni VMC – the VISTA survey of the Magellanic System (Gal-Exgal survey) Metallicity of stellar populaons Moon of stellar populaons ESO spectroscopic survey workshop ESO-Garching, Germany, 9-10 March 2009 The VISTA survey of the Magellanic System ESO Public Survey 2009-2014 The most sensive near‐IR survey across the LMC, SMC, The team Bridge and part of the Stream M. Cioni, K. Bekki, G. Clemenni, W. de Blok, J. Emerson, C. Evans, R. de Grijs, B. Gibson, L. Girardi, M. Groenewegen, 4m Telescope V. Ivanov, M. Marconi, C. Mastropietro, B. Moore, R. Napiwotzki, T. Naylor, J. Oliveira, V. Ripepi, J. van Loon, M. Wilkinson, P. Wood 1.5 deg2 FOV United Kingdom, Italy, Belgium, Chile, France, Switzerland, South Africa, Australia http://star.herts.ac.uk/~mcioni/vmc/ 0. Observe the Magellanic System 2 ≈180 deg 3 filters ‐ YJKs 15 epochs (12 in KS and 3 in YJ; once simultaneous colours) S/N=10 at: Y=21.9, J=21.4, Ks=20.3 (Ks≈19 single epoch) Seeing 0.8 arcsec – average Spaal resoluon 0.34 pix/arcsec (0.51 arcsec instrument PSF) Service mode observing 1840 hours / 240 nights http://star.herts.ac.uk/~mcioni/vmc/ I. Derive the spaally resolved SFH Synthec diagram of a typical LMC stellar field as expected from VMC data. This field covers 1 VISTA detector! Accuracy: metallicity S/N=10 0.1 dex and age 20% in 0.1 deg2 Kerber et al 2009 http://star.herts.ac.uk/~mcioni/vmc/ II. Trace the 3D structure as a funcon of me The LMC is a few kpc thick and the SMC up to 20 kpc RR Lyrae stars are excellent distance indicators in the near‐IR First applicaon to the LMC bar to derive the LMC distance (Szewczyk et al 2008) – 0.2 kpc accuracy The structure of the Magellanic System will be measured using Cepheid variables, the red clump luminosity, the p of the red giant brach, etc.
    [Show full text]
  • Arxiv:1806.06038V2 [Astro-Ph.GA] 31 Oct 2018 Gaia-Enceladus on the Basis of Their Orbits
    The merger that led to the formation of the Milky Way's inner stellar halo and thick disk Amina Helmi1, Carine Babusiaux2, Helmer H. Koppelman1, Davide Massari1, Jovan Veljanoski1, Anthony G. A. Brown3 1Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands 2Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France and GEPI, Observatoire de Paris, Universit´ePSL, CNRS, 5 Place Jules Janssen, 92190 Meudon, France 3Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands The assembly process of our Galaxy can be retrieved using the motions and chemistry of individual stars.1, 2 Chemo-dynamical studies of the nearby halo have long hinted at the presence of multiple components such as streams,3 clumps,4 duality5 and correlations between the stars' chemical abundances and orbital parameters.6, 7, 8 More recently, the analysis of two large stellar sur- veys9, 10 have revealed the presence of a well-populated chemical elemental abun- dance sequence,7, 11 of two distinct sequences in the colour-magnitude diagram,12 and of a prominent slightly retrograde kinematic structure13, 14 all in the nearby halo, which may trace an important accretion event experienced by the Galaxy.15 Here report an analysis of the kinematics, chemistry, age and spatial distribution of stars in a relatively large volume around the Sun that are mainly linked to two major Galactic components, the thick disk and the stellar halo. We demon- strate that the inner halo is dominated by debris from an object which at infall was slightly more massive than the Small Magellanic Cloud, and which we refer to as Gaia-Enceladus.
    [Show full text]
  • The Shape of the Galactic Halo with Gaia DR2 RR Lyrae
    MNRAS 000,1{13 (2018) Preprint 16 October 2018 Compiled using MNRAS LATEX style file v3.0 The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger Giuliano Iorio1? and Vasily Belokurov1;2y 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2Centre for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We use the Gaia DR2 RR Lyrae sample to gain an uninterrupted view of the Galactic stellar halo. We dissect the available volume in slices parallel to the Milky Way's disc to show that within ∼ 30 kpc from the Galactic centre the halo is triaxial, with the longest axis misaligned by ∼ 70◦ with respect to the Galactic x-axis. This anatomical procedure exposes two large diffuse over-densities aligned with the semi- major axis of the halo: the Hercules-Aquila Cloud and the Virgo Over-density. We reveal the kinematics of the entire inner halo by mapping out the amplitudes and directions of the RR Lyrae proper motions. These are then compared to simple models with different anisotropies to demonstrate that the inner halo is dominated by stars on highly eccentric orbits. We interpret the shape of the density and the kinematics of the Gaia DR2 RR Lyrae as evidence in favour of a scenario in which the bulk of the halo was deposited in a single massive merger event. Key words: galaxies: individual (Milky Way) { Galaxy: structure { Galaxy: stellar content { Galaxy: stellar halo { stars: (RR Lyrae) { Galaxy: kinematics 1 INTRODUCTION Dav´eet al.
    [Show full text]
  • Astrotalk: Behind the News Headlines
    AstroTalk: Behind the news headlines Richard de Grijs (何锐思) (Macquarie University, Sydney, Australia) The Gaia ‘Sausage’ galaxy Our Milky Way galaxy has most likely collided or otherwise interacted with numerous other galaxies during its lifetime. Indeed, such interactions are common cosmic occurrences. Astronomers can deduce the history of mass accretion onto the Milky Way from a study of debris in the halo of the galaxy left as the tidal residue of such episodes. That approach has worked particularly well for studies of the most recent merger events, like the infall of the Sagittarius dwarf galaxy into the Milky Way’s centre a few billion years ago, which left tidal streamers of stars visiBle in galaxy maps. The damaging effects these encounters can cause to the Milky Way have, however, not been as well studied, and events even further in the past are even less obvious as they Become Blurred By the galaxy’s natural motions and evolution. Some episodes in the Milky Way’s history, however, were so cataclysmic that they are difficult to hide. Scientists have known for some time that the Milky Way’s halo of stars drastically changes in character with distance from the galactic centre, as revealed by the chemical composition—the ‘metallicity’—of the stars, the stellar motions, and the stellar density. Harvard astronomer Federico Marinacci and his colleagues recently analysed a suite of cosmological computer simulations and the galaxy interactions in them. In particular they analysed the history of galaxy halos as they evolved following a merger event. They concluded that six to ten Billion years ago the Milky Way merged in a head- on collision with a dwarf galaxy containing stars amounting to about one-to-ten billion solar masses, and that this collision could produce the character changes in stellar populations currently observed in the Milky Way’s stellar halo.
    [Show full text]
  • A Beast with Four Tails 30 November 2011
    A beast with four tails 30 November 2011 An artist's impression of the four tails of the Sagittarius Dwarf Galaxy (the orange clump on the left of the image) orbiting the Milky Way. The bright yellow circle to the right of the galaxy's center is our Sun (not to scale). The Sagittarius dwarf galaxy is on the other side of the galaxy from us, but we can see its tidal tails of stars (white in this Barred Spiral Milky Way. Illustration Credit: R. Hurt image) stretching across the sky as they wrap around our (SSC), JPL-Caltech, NASA galaxy. Credit: Credit: Amanda Smith, Institute of Astronomy, University of Cambridge (PhysOrg.com) -- The Milky Way galaxy continues to devour its small neighbouring dwarf galaxies The Sagittarius dwarf galaxy used to be one of the and the evidence is spread out across the sky. brightest of the Milky Way satellites. Its disrupted remnant now lies on the other side of the Galaxy, A team of astronomers led by Sergey Koposov and breaking up as it is crushed and stretched by huge Vasily Belokurov of Cambridge University recently tidal forces. It is so small that it has lost half of its discovered two streams of stars in the Southern stars and all its gas over the last billion years. Galactic hemisphere that were torn off the Sagittarius dwarf galaxy. This discovery came from Before SDSS-III, Sagittarius was known to have analysing data from the latest Sloan Digital Sky two tails, one in front of and one behind the Survey (SDSS-III) and was announced in a paper remnant.
    [Show full text]
  • Authentic Data in the Classroom with the Sloan Digital Sky Survey
    Proc. of the GHOU 2007 in Tokyo Authentic Data in the Classroom with the Sloan Digital Sky Survey M. Jordan Raddick* 1 Student engagement with the process of science is a proven part of high­quality science education, but authentic science activities can be difficult in astronomy because of the difficulty students have in taking data. This paper describes how the Sloan Digital Sky Survey (SDSS) contributes to solving this problem by making its entire dataset available to students and the public, free of charge. The survey's SkyServer website (http://skyserver.sdss.org) includes simple tools to browse and search the data, as well as projects that use the data to teach science. The dataset is also a great source of independent research projects for students. 1. Introduction for each star or galaxy, including magnitudes and object types. Images are available as FITS files. Movements in science education reform in the The survey also measures follow­up spectra for United States and around the world frequently cite stars, galaxies and quasars. These spectra run from engagement with the process of science as a key 3800 to 9200 Ångstroms, and have a resolution of component of effective science learning, and 1.8 Ångstroms per pixel. They are available as GIF scientific inquiry as an important part of images or FITS files, and detailed line widths and understanding science [1,2]. strengths are available for each spectral line. Laboratory activities in other science subjects frequently make use of student inquiry labs, in which 3. SkyServer students make their own observations, interpret the results, and draw conclusions.
    [Show full text]
  • Direct N-Body Simulations of Globular Clusters--III. Palomar\, 4 on An
    MNRAS 000, 1–11 (2013) Preprint 14 September 2018 Compiled using MNRAS LATEX style file v3.0 Direct N-body simulations of globular clusters – III. Palomar4 on an eccentric orbit Akram Hasani Zonoozi1⋆, Hosein Haghi1, Pavel Kroupa2,3, Andreas H.W. K¨upper4†, Holger Baumgardt5 1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 11365-9161, Zanjan, Iran 2Helmholtz-Institut f¨ur Strahlen-und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14-16, D-53115 Bonn, Germany 3Charles University in Prague, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic 4Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA 5School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia Accepted .... Received ABSTRACT Palomar 4 is a low-density globular cluster with a current mass ≈ 30000 M⊙in the outer halo of the Milky Way with a two-body relaxation time of the order of a Hubble time. Yet, it is strongly mass segregated and contains a stellar mass function depleted of low-mass stars. Pal 4 was either born this way or it is a result of extraordi- nary dynamical evolution. Since two-body relaxation cannot explain these signatures alone, enhanced mass loss through tidal shocking may have had a strong influence on Pal 4. Here, we compute a grid of direct N-body simulations to model Pal4 on various eccentric orbits within the Milky Way potential to find likely initial conditions that reproduce its observed mass, half-light radius, stellar MF-slope and line-of-sight ve- locity dispersion.
    [Show full text]
  • University of Groningen the Sagittarius Stream with Gaia Data
    University of Groningen The Sagittarius stream with Gaia data Antoja, T.; Ramos, P.; Mateu, C.; Helmi, A.; Castro-Ginard, A.; Anders, F.; Jordi, C.; Carballo- Bello, J. A.; Balbinot, E.; Carrasco, J. M. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Antoja, T., Ramos, P., Mateu, C., Helmi, A., Castro-Ginard, A., Anders, F., Jordi, C., Carballo-Bello, J. A., Balbinot, E., & Carrasco, J. M. (2020). The Sagittarius stream with Gaia data. Paper presented at EA XIV.0 Reunión Científica , . https://ui.adsabs.harvard.edu/abs/2020sea..confE.117A Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • Young Globular Clusters and Dwarf Spheroidals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Young Globular Clusters and Dwarf Spheroidals Sidney van den Bergh Dominion Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada ABSTRACT Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of “young” globulars at RGC > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the “young” globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo. Subject headings: Globular clusters - galaxies: dwarf The galaxy is, in fact, nothing but a congeries of innumerable stars grouped together in clusters. Galileo (1610) –2– 1. Introduction The vast majority of Galactic globular clusters appear to have formed at about the same time (e.g.
    [Show full text]