Mammals Activity Sheet 7-10

Total Page:16

File Type:pdf, Size:1020Kb

Mammals Activity Sheet 7-10 Mammals in the Museum Discovery Activity Sheet Y7-10 What is a mammal? Mammals are warm-blooded animals that have hair of some form on their bodies and mammary glands which produce milk. Different species of mammals have adapted to live in many different environments- on the land, underground, in the air, in the tree tops and underwater. Mammals are divided into three groups – monotremes, marsupials and placentals. Monotremes lay eggs. Marsupials give birth to very small, poorly developed offspring. Most female marsupials have pouches and the young develop inside the pouch. Placental mammals, like humans, give birth to well-developed young. Monotremes, marsupials and placentals Do a little research to further investigate the differences between the three types of mammals. For example, how does a monotreme provide milk to its young? Do all marsupials have pouches? Sort the mammals! Sort this list of mammals into monotremes, marsupials and placentals. Echidna Quoll Bandicoot Dunnart Platypus Manatee Antelope Numbat Hedgehog Kangaroo Cat Opossum Koala Lemur Bat Armadillo Mouse Seal Kultarr Tasmanian devil Thylacine Wombat Whale Sugar glider Raccoon Human Sloth Wallaby Bilby Quokka Elephant Sheep Bear Resources from the Australian Museum: https://australianmuseum.net.au/learn/animals/mammals/ https://australianmuseum.net.au/learn/species-identification/ask-an-expert/what- is-a-mammal/ https://australianmuseum.net.au/learn/collections/natural-science/mammalogy/ https://australianmuseum.net.au/learn/species-identification/ask-an-expert/what- is-a-monotreme/ https://australianmuseum.net.au/learn/species-identification/ask-an-expert/what- is-a-marsupial/ ANSWERS Monotremes Echidna Platypus Marsupials Kangaroo Koala Wombat Quoll Tasmanian devil Numbat Dunnart Bilby Bandicoot Wallaby Opossum Thylacine Sugar glider Kultarr Quokka Placentals Whale Human Elephant Armadillo Cat Sheep Antelope Raccoon Hedgehog Mouse Bat Manatee Seal Sloth Lemur Bear Mammals .
Recommended publications
  • Lindsay Masters
    CHARACTERISATION OF EXPERIMENTALLY INDUCED AND SPONTANEOUSLY OCCURRING DISEASE WITHIN CAPTIVE BRED DASYURIDS Scott Andrew Lindsay A thesis submitted in fulfillment of requirements for the postgraduate degree of Masters of Veterinary Science Faculty of Veterinary Science University of Sydney March 2014 STATEMENT OF ORIGINALITY Apart from assistance acknowledged, this thesis represents the unaided work of the author. The text of this thesis contains no material previously published or written unless due reference to this material is made. This work has neither been presented nor is currently being presented for any other degree. Scott Lindsay 30 March 2014. i SUMMARY Neosporosis is a disease of worldwide distribution resulting from infection by the obligate intracellular apicomplexan protozoan parasite Neospora caninum, which is a major cause of infectious bovine abortion and a significant economic burden to the cattle industry. Definitive hosts are canid and an extensive range of identified susceptible intermediate hosts now includes native Australian species. Pilot experiments demonstrated the high disease susceptibility and the unexpected observation of rapid and prolific cyst formation in the fat-tailed dunnart (Sminthopsis crassicaudata) following inoculation with N. caninum. These findings contrast those in the immunocompetent rodent models and have enormous implications for the role of the dunnart as an animal model to study the molecular host-parasite interactions contributing to cyst formation. An immunohistochemical investigation of the dunnart host cellular response to inoculation with N. caninum was undertaken to determine if a detectable alteration contributes to cyst formation, compared with the eutherian models. Selective cell labelling was observed using novel antibodies developed against Tasmanian devil proteins (CD4, CD8, IgG and IgM) as well as appropriate labelling with additional antibodies targeting T cells (CD3), B cells (CD79b, PAX5), granulocytes, and the monocyte-macrophage family (MAC387).
    [Show full text]
  • Local Population Structure of a Naturally Occurring Metapopulation of the Quokka (Setonix Brachyurus Macropodidae: Marsupialia)
    Biological Conservation 110 (2003) 343–355 www.elsevier.com/locate/biocon Local population structure of a naturally occurring metapopulation of the quokka (Setonix brachyurus Macropodidae: Marsupialia) Matt W. Haywarda,b,c,*, Paul J. de Toresb,c, Michael J. Dillonc, Barry J. Foxa aSchool of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia bDepartment of Conservation and Land Management, Wildlife Research Centre, PO Box 51 Wanneroo, WA6946, Australia cDepartment of Conservation and Land Management, Dwellingup Research Centre, Banksiadale Road, Dwellingup, WA6213, Australia Received 8 May 2002; received in revised form 18 July 2002; accepted 22 July 2002 Abstract We investigated the population structure of the quokka (Setonix brachyurus) on the mainland of Western Australia using mark– recapture techniques. Seven previously known local populations and one unconfirmed site supporting the preferred, patchy and discrete, swampy habitat of the quokka were trapped. The quokka is now considered as locally extinct at three sites. The five remaining sites had extremely low numbers, ranging from 1 to 36 individuals. Population density at these sites ranged from 0.07 to 4.3 individuals per hectare. There has been no response to the on-going, 6 year fox control programme occurring in the region despite the quokkas’ high fecundity and this is due to low recruitment levels. The remaining quokka populations in the northern jarrah forest appear to be the terminal remnants of a collapsing metapopulation. # 2002 Elsevier Science Ltd. All rights reserved. Keywords: Population structure; Predation; Reproduction; Setonix brachyurus; Vulnerable 1. Introduction The Rottnest Island quokka population fluctuates around 5000 with peaks of 10,000 individuals (Waring, The quokka (Setonix brachyurus Quoy & Gaimard 1956).
    [Show full text]
  • Post-Release Monitoring of Western Grey Kangaroos (Macropus Fuliginosus) Relocated from an Urban Development Site
    animals Article Post-Release Monitoring of Western Grey Kangaroos (Macropus fuliginosus) Relocated from an Urban Development Site Mark Cowan 1,* , Mark Blythman 1, John Angus 1 and Lesley Gibson 2 1 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Wildlife Research Centre, Woodvale, WA 6026, Australia; [email protected] (M.B.); [email protected] (J.A.) 2 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-9405-5141 Received: 31 August 2020; Accepted: 5 October 2020; Published: 19 October 2020 Simple Summary: As a result of urban development, 122 western grey kangaroos (Macropus fuliginosus) were relocated from the outskirts of Perth, Western Australia, to a nearby forest. Tracking collars were fitted to 67 of the kangaroos to monitor survival rates and movement patterns over 12 months. Spotlighting and camera traps were used as a secondary monitoring technique particularly for those kangaroos without collars. The survival rate of kangaroos was poor, with an estimated 80% dying within the first month following relocation and only six collared kangaroos surviving for up to 12 months. This result implicates stress associated with the capture, handling, and transport of animals as the likely cause. The unexpected rapid rate of mortality emphasises the importance of minimising stress when undertaking animal relocations. Abstract: The expansion of urban areas and associated clearing of habitat can have severe consequences for native wildlife. One option for managing wildlife in these situations is to relocate them.
    [Show full text]
  • The Hunter and Biodiversity in Tasmania
    The Hunter and Biodiversity in Tasmania The Hunter takes place on Tasmania’s Central Plateau, where “One hundred and sixty-five million years ago potent forces had exploded, clashed, pushed the plateau hundreds of metres into the sky.” [a, 14] The story is about the hunt for the last Tasmanian tiger, described in the novel as: “that monster whose fabulous jaw gapes 120 degrees, the carnivorous marsupial which had so confused the early explorers — a ‘striped wolf’, ‘marsupial wolf.’” [a, 16] Fig 1. Paperbark woodlands and button grass plains near Derwent Bridge, Central Tasmania. Source: J. Stadler, 2010. Biodiversity “Biodiversity”, or biological diversity, refers to variety in all forms of life—all plants and animals, their genes, and the ecosystems they live in. [b] It is important because all living things are connected with each other. For example, humans depend on living things in the environment for clean air to breathe, food to eat, and clean water to drink. Biodiversity is one of the underlying themes in The Hunter, a Tasmanian film directed by David Nettheim in 2011 and based on Julia Leigh’s 1999 novel about the hunt for the last Tasmanian Tiger. The film and the novel showcase problems that arise from loss of species, loss of habitat, and contested ideas about land use. The story is set in the Central Plateau Conservation Area and much of the film is shot just south of that area near Derwent Bridge and in the Florentine Valley. In Tasmania, land clearing is widely considered to be the biggest threat to biodiversity [c, d].
    [Show full text]
  • Biparental Care and Obligate Monogamy in the Rock-Haunting Possum, Petropseudes Dahli, from Tropical Australia
    ANIMAL BEHAVIOUR, 2000, 59, 1001–1008 doi:10.1006/anbe.1999.1392, available online at http://www.idealibrary.com on Biparental care and obligate monogamy in the rock-haunting possum, Petropseudes dahli, from tropical Australia MYFANWY J. RUNCIE CRC for Sustainable Development of Tropical Savannas, Northern Territory University (Received 10 May 1999; initial acceptance 9 June 1999; final acceptance 30 December 1999; MS. number: 6222R) Monogamy is rare among mammals, including marsupials. I studied the social organization of the little-known rock-haunting possum in Kakadu National Park in Northern Australia. Preliminary field observations revealed that the majority of possums live in cohesive groups consisting of a female–male pair and young, suggesting a monogamous mating system. I used radiotracking to determine home range patterns, and observations to measure the degree of symmetry between the sexes in maintaining the pair bond and initiating changes in group activity. I also measured the extent of maternal and paternal indirect and direct care. Nocturnal observations and radiotelemetric data from 3 years showed that six possum groups maintained nonoverlapping home ranges with long-term consorts and young sharing dens. Males contributed more than females to maintaining the pair bond but they contributed equally to parental care. For the first time, the parental behaviours of bridge formation, embracing, marshalling of young, sentinel behaviour and tail beating are reported in a marsupial. Males participated to a high degree in maintaining relationships with one mate and their offspring. Collectively, these results suggest that the mating system of this wild population of rock-haunting possums is obligate social monogamy.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Complement Function and Expression in the Red-Tailed
    Complement Function and Expression in the Red-Tailed Phascogale (Phascogale calura) Oselyne Tsuey Wei Ong B. Med. Sc. (Biomedical Sciences), M. Sc. (Conservation Biology) Submitted for the completion of a Doctor of Philosophy degree at the Western Sydney University October 2016 TABLE OF CONTENTS Table of Figures............................................................................................................. i Table of Tables ............................................................................................................ iv Acknowledgements ...................................................................................................... v Statement of Authentication .................................................................................... vii Preface ....................................................................................................................... viii Publications ................................................................................................................. ix Conference and Seminar Presentations ..................................................................... x Abstract ......................................................................................................................... 1 Introduction .................................................................................................................. 5 1.1 Marsupials as Mammals ......................................................................................... 6 1.1.2 Red-Tailed
    [Show full text]
  • Husbandry Guidelines for Feathertail Gliders
    Husbandry Guidelines for (Photo: Luke Hogan, 1996) Feathertail Gliders Acrobates frontalis & Acrobates pygmaeus (Mammalia: Acrobatidae) Date By From Version 2012 Tom Patterson WSI Richmond v 1 Husbandry Manual for the Feathertail Glider DISCLAIMER These husbandry guidelines were produced by the compiler/author at TAFE NSW Western Sydney Institute, Richmond College, N.S.W. Australia as part assessment for completion of Certificate III in Captive Animals, Course number 18913. Since the husbandry guidelines are the result of student project work, care should be taken in the interpretation of information therein. In effect, all care taken but no responsibility is assumed for any loss or damage that may result from the use of these guidelines. Care has been taken to acknowledge the correct ownership of work. Should It is offered to the ASZK Husbandry Manuals Register for the benefit of animal welfare and care. Husbandry guidelines are utility documents and are ‘works in progress’, so enhancements to these guidelines are invited. 2 Annual Cycle of Maintenance Breeding Torpor Exhibit Change Replace Scrub Replace Soil Decrease Pest Collect Scrub Leaf nesting Nest (if applicable) food Control Faecal (1) (2) Litter materials Boxes (Torpor) Samples January February March April May June July August September October November December Note: (1) Northern populations – most likely all Acrobates frontalis, (2) Southern populations – most likely all Acrobates pygmaeus. All maintenance cycle should be used as a guide only. These tasks are noted at a minimum, but should be done as required. Record keeping, weights, observations and environmental enrichment should occur all year round OCCUPATIONAL HEALTH AND SAFETY RISKS OH&S hazards can include anything that may be seen as a potential risk to you as a keeper or a member of the public.
    [Show full text]
  • ANSWER KEY for the MAMMAL SEARCH and FIND
    ANSWER KEY: MAMMAL SEARCH AND FIND A) An animal you already know about B) An animal you have never heard of C) An animal whose name starts with the same letter as your name. (You may use the full species name, the general name, or the scientific name for example: Sloth Bear [Ursus ursinus] is okay for the letters S, B and U.) There are multiple answers for many letters, but here is one for each. A anteater B bongo C coati D dibatag E echidna F fanaloka G giraffe H hedgehog I Indian pangolin J jumping mouse K kultarr L llama M mongoose N numbat O okapi P panda Q quoll katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND R raccoon S sloth T tamandua U Ursus ursinus (sloth bear) V vicuna W wildebeest X Xenarthran* Y yellow footed rock wallaby Z zorilla *this is a bit of a cheat Xenarthra is the superorder that include anteaters, tree sloths and armadillo. There were 6 in the show. D) 7 spotted animals African civet fanaloka quoll king cheetah common genet giraffe spotted cuscus E) 2 flying animals Chapin's free-tailed bat Bismarck masked flying fox F) 2 swimming animals Southern Right Whale Commerson's Dolphin katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND G) 2 mammals that lay eggs short beaked echidna western long beaked echidna H) 2 animals that look similar to skunks and are also stinky long fingered trick Zorilla I) 1 animal that smells like buttered
    [Show full text]
  • Greater Glider Management Plan: South Gippsland. Draft
    1 Greater Glider Management Plan: South Gippsland. Draft Greater Glider, Mirboo Regional Park (HVP). Powerful Owls, Mirboo Regional Park (Dickies Hill). 2 INDEX 1. Aim……………………………………………………………………………………..…………………………. 2. Biology………………………………………………………………………………….……………………….. 3. Current Distribution South Gippsland…………………………………………………………….. P.2 4. Greater Glider Populations…………………………………………………....……………………... P.2 4.1. Mirboo Regional Park & Dickies Hill……………………………..…………………………..…. P.2 4.2. Hallston…………………………………………………………………………………………………….…. P.3 4.3. Gunyah rainforest Reserve……………………………………………................................ P.3 5. Threats……………………………………………………………………………………………………….…. P.3 5.1. Habitat Connectivity…………………………………………………..……………………………..… P.4 5.2. Habitat Destruction…………………………………………………………………………………..... P.5 5.3. Predators…………………………………………………………….………………………………….…... P.5 5.4. Climate Change………………………………………………………………………………………….... P.5 5.5. Firewood Collection………………………………………………………………………………….….. P.5 5.6. Timber Production…………………………………………………………………………………..…... P.6 5.7. Other Threats………………………………………………………………….……………………….….. P.6 P.6 6. Management Actions…………………………………………………………………………. P.6 5.1 Current and Future Habitat Restoration …………………………………………………………….… P.7 Hallston……………………………………………………………………………………………………………………… P.8 Mirboo RP…………………………………………………………………………………………………………………. P.8 5.2 Genetic diversity……………………………………………………………………………………………….... P.10 5.3 Predation………………………………………………………………………………………………………..….. P.13 5.4 Climate Change…………………………………………………………………………………………..………. P.14
    [Show full text]
  • Small Mammal Population Dynamics and Range Shifts with Climate
    RESOURCES, DATA RESOLUTION AND SMALL MAMMAL RANGE DYNAMICS Nerissa Haby B. Env. Sci. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy April 2012 Ecology and Evolutionary Biology University of Adelaide, Australia Table of contents Table of contents i Abstract ii Acknowledgements iii Declaration iv How well do existing evaluations of climate change impacts on range Introduction 1 dynamics represent Australian small mammals? Improving performance and transferability of small-mammal species Chapter 1. 8 distribution models Chapter 2. Specialist resources are key to improving small mammal distribution models 22 Scale dependency of metapopulation models used to predict climate change Chapter 3. 35 impacts on small mammals Lessons from the arid zone: using climate variables to predict small mammal Chapter 4. 52 occurrence in hot, dry environments Ecosystem dynamics, evolution and dependency of higher trophic organisms Chapter 5. 69 on resource gradients Conclusion 79 References 89 Appendix 106 Publications associated with this thesis 153 i Abstract Extensive range shift and mass extinctions resulting from climate change are predicted to impact all biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have been observed in empirical and modelling investigations that continue to under-represent small mammal species (Introduction). Given small mammals are primary or higher order consumers and often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital for generating accurate estimates of range shift. This idea was investigated through the influence of coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate- and five arid-zone small mammals.
    [Show full text]
  • Aussie Animals Aussie Reptiles Photos & Prese
    S SSIE ANIMALS TION AU AUSSIE RE RESENTA PTILES PHOTOS & P KOALAS & PYTHONS QUOKKAS LIZARDS We are one of the few places in & KOALAS & CROCS Australia where you have the opportunity to HOLD a Koala for a The Quokka is a small macropod about the size of a domestic cat and it Australia is home to the world’s most amazing collection of lizards, great souvenir photo. For a small is found in Western Australia. Though they resemble rodents, Quokkas dragons and monitors. Camouflage is their key to survival, so take additional cost, you will have a are actually marsupials, like kangaroos and wallabies. your time and try to find them. memory to last a lifetime. Or for Everyone one loves a Koala! Whether they are eating, sleeping or just Crocodiles have been part of the Australian eco- something on the “scaly side”, have a looking adorable, they are Australia’s most loved animal. Over millions system for millions of years. Here you will find photo with a large python. (extra cost) of years, the Koala’s diet has evolved to one that is exclusively of Freshwater Crocodiles which are mainly found eucalyptus leaves. in inland river systems. The larger and more aggressive Saltwater or Estuarine Crocodile NOCTURNAL WALLABIES & WOMBATS found in coastal river systems, can be seen at Hartley’s Crocodile Adventures. WONDERS TOUR Did you know that Australia has over 70 2.00pm Join our Wildlife Keeper for species of macropods, ranging from the a short guided walk through the new tiny Musky Rat Kangaroo to the giant Red PIONEERING HISTORY Nocturnal Wonders exhibit learning Kangaroos seen in the Outback? Meet, pat Kuranda Koala Gardens is operated about Bilbies, possums and gliders.
    [Show full text]