Numbat (Myrmecobius Fasciatus) Recovery Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Specialised Thylacinid, Thylacinus Macknessi; (Marsupialia: Thylacinidae) from Miocene Deposits of Riversleigh, Northwestern Queensland
A SPECIALISED THYLACINID, THYLACINUS MACKNESSI; (MARSUPIALIA: THYLACINIDAE) FROM MIOCENE DEPOSITS OF RIVERSLEIGH, NORTHWESTERN QUEENSLAND JEANElTE MUIRHEAD M uirhead, J ., 1992. A specialised thylacinid, Thylacinus macknessi, (Marsupialia: Thylacinidae) from Miocene deposits of Riversleigh, northwestern Queensland. Australian Mammalogy 15: 67-76. Thylacinus macknessi is described from Miocene sediments of Riversleigh, northwestern Queensland. Comparisons with other thylacinids and dasyurids reveal it to be a new species of Thy/acinus. In most features it is as specialised as T. cynocepha/us and it is not considered to be ancestral to any other taxon. The presence of such a specialised thylacine in the Riversleigh deposits argues for a pre-Late Oligocene divergence of this group from the Dasyuridae. Key words: Thylacine, 1h)'lacinus macknessi, Thylacinidae, Riversleigh, Tertiary, Queensland, Marsupialia. I. Muirhead. Schoo/ of Bi%gica/ Sciences, University of New South Wa/es, PO Box I Kensington New South Wales 2033. Manuscript received /4 September 1991. THE Thylacinidae is a small family consisting of a abbreviations used are: QMF, Queensland Museum recently extinct form Thy/acinus cynocepha/us Harris, palaeontological collection; AR, temporary catalogue and two Tertiary taxa. Although thylacinid premolars number in School of Biological Science, U niversity of have been recovered from the Miocene Wipajiri New South Wales. Measurements of tooth dimensions Formation of South Australia and the late Pliocene of 7: macknessi are presented -
A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation. -
The Conservation Ecology of the Endangered Numbat Myrmecobius Fasciatus (Marsupialia: Myrmecobiidae) Reintroduced to Scotia and Yookamurra Sanctuaries, Australia
Numbat nirvana: the conservation ecology of the endangered numbat ANGOR UNIVERSITY Myrmecobius fasciatus (Marsupialia: Myrmecobiidae) reintroduced to Scotia and Yookamurra Sanctuaries, Australia Hayward, M.W.; Poh, A.S.; Cathcart, J.; Churcher, C.; Bentley, J.; Herman, K.; Kemp, L.; Riessen, N.; Scully, P.; Dion, C.H.; Legge, S.; Carter, A.; Gibb, H.; Friend, J.A. Australian Journal of Zoology DOI: PRIFYSGOL BANGOR / B 10.1071/ZO15028 Published: 15/10/2015 Peer reviewed version Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Hayward, M. W., Poh, A. S., Cathcart, J., Churcher, C., Bentley, J., Herman, K., Kemp, L., Riessen, N., Scully, P., Dion, C. H., Legge, S., Carter, A., Gibb, H., & Friend, J. A. (2015). Numbat nirvana: the conservation ecology of the endangered numbat Myrmecobius fasciatus (Marsupialia: Myrmecobiidae) reintroduced to Scotia and Yookamurra Sanctuaries, Australia. Australian Journal of Zoology. https://doi.org/10.1071/ZO15028 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
The Hunter and Biodiversity in Tasmania
The Hunter and Biodiversity in Tasmania The Hunter takes place on Tasmania’s Central Plateau, where “One hundred and sixty-five million years ago potent forces had exploded, clashed, pushed the plateau hundreds of metres into the sky.” [a, 14] The story is about the hunt for the last Tasmanian tiger, described in the novel as: “that monster whose fabulous jaw gapes 120 degrees, the carnivorous marsupial which had so confused the early explorers — a ‘striped wolf’, ‘marsupial wolf.’” [a, 16] Fig 1. Paperbark woodlands and button grass plains near Derwent Bridge, Central Tasmania. Source: J. Stadler, 2010. Biodiversity “Biodiversity”, or biological diversity, refers to variety in all forms of life—all plants and animals, their genes, and the ecosystems they live in. [b] It is important because all living things are connected with each other. For example, humans depend on living things in the environment for clean air to breathe, food to eat, and clean water to drink. Biodiversity is one of the underlying themes in The Hunter, a Tasmanian film directed by David Nettheim in 2011 and based on Julia Leigh’s 1999 novel about the hunt for the last Tasmanian Tiger. The film and the novel showcase problems that arise from loss of species, loss of habitat, and contested ideas about land use. The story is set in the Central Plateau Conservation Area and much of the film is shot just south of that area near Derwent Bridge and in the Florentine Valley. In Tasmania, land clearing is widely considered to be the biggest threat to biodiversity [c, d]. -
Translocations and Fauna Reconstruction Sites: Western Shield Review—February 2003
108 Conservation Science W. Aust. 5 (2) : 108–121P.R. Mawson (2004) Translocations and fauna reconstruction sites: Western Shield review—February 2003 PETER R. MAWSON1 1Senior Zoologist, Wildlife Branch , Department of Conservation and Land Management, Locked Bag 104 Bentley Delivery Centre WA 6983. [email protected] SUMMARY address this problem, but will result in slower progress towards future milestones for some species. The captive-breeding of western barred bandicoots Objectives has also been hampered by disease issues, but this problem is dealt with in more detail elsewhere in this edition (see The objectives of Western Shield with regard to fauna Morris et al. this issue). translocations were to re-introduce a range of native fauna There is a clear need to better define criteria that will species to a number of sites located primarily in the south- be used to determine the success or failure of translocation west of Western Australia. At some sites whole suites of programs, and for those same criteria to be included in fauna needed to be re-introduced, while at others only Recovery Plans and Interim Recovery Plans. one or a few species were targeted for re-introduction. A small number of the species that are currently the Integration of Western Shield activities with recovery subject of captive-breeding programs and or translocations actions and co-operative arrangements with community do not have Recovery Plans or Interim Recovery Plans, groups, wildlife carers, wildlife sanctuaries, Perth Zoo and contrary to CALM Policy Statement No. 50. In other educational outcomes were other key objectives. cases the priorities by which plans are written does not Achievements reflect the IUCN rank assigned those species by the Western Australian Threatened Species Scientific The fauna translocation objectives defined in the founding Committee. -
A Description of Copulation in the Kori Bustard J Ardeotis Kori
i David C. Lahti & Robert B. Payne 125 Bull. B.O.C. 2003 123(2) van Someren, V. G. L. 1918. A further contribution to the ornithology of Uganda (West Elgon and district). Novitates Zoologicae 25: 263-290. van Someren, V. G. L. 1922. Notes on the birds of East Africa. Novitates Zoologicae 29: 1-246. Sorenson, M. D. & Payne, R. B. 2001. A single ancient origin of brood parasitism in African finches: ,' implications for host-parasite coevolution. Evolution 55: 2550-2567. 1 Stevenson, T. & Fanshawe, J. 2002. Field guide to the birds of East Africa. T. & A. D. Poyser, London. Sushkin, P. P. 1927. On the anatomy and classification of the weaver-birds. Amer. Mus. Nat. Hist. Bull. 57: 1-32. Vernon, C. J. 1964. The breeding of the Cuckoo-weaver (Anomalospiza imberbis (Cabanis)) in southern Rhodesia. Ostrich 35: 260-263. Williams, J. G. & Keith, G. S. 1962. A contribution to our knowledge of the Parasitic Weaver, Anomalospiza s imberbis. Bull. Brit. Orn. Cl. 82: 141-142. Address: Museum of Zoology and Department of Ecology and Evolutionary Biology, University of " > Michigan, Ann Arbor, Michigan 48109, U.S.A. email: [email protected]. 1 © British Ornithologists' Club 2003 I A description of copulation in the Kori Bustard j Ardeotis kori struthiunculus \ by Sara Hallager Received 30 May 2002 i Bustards are an Old World family with 25 species in 6 genera (Johnsgard 1991). ? Medium to large ground-dwelling birds, they inhabit the open plains and semi-desert \ regions of Africa, Australia and Eurasia. The International Union for Conservation | of Nature and Natural Resources (IUCN) Red List of Threatened Animals lists four f species of bustard as Endangered, one as Vulnerable and an additional six as Near- l Threatened, although some species have scarcely been studied and so their true I conservation status is unknown. -
Greater Bilby Macrotis Lagotis
Threatened Species Strategy – Year 3 Priority Species Scorecard (2018) Greater Bilby Macrotis lagotis Key Findings Greater Bilbies once ranged over three‑ quarters of Australia, but declined coincident with the spread of European foxes, along with habitat changes from introduced herbivores (especially rabbits), changed fire regimes and predation by feral cats. Recovery actions have focused on maintaining or restoring traditional Indigenous patchwork fire regimes and controlling introduced predators. Translocations into predator-free exclosures and a predator-free island have allowed for further increases in population and re- establishment into the species’ former range. Photo: Queensland Department of Environment and Science Significant trajectory change from 2005-15 to 2015-18? No, generally stable overall. Priority future actions • Effective landscape-scale fire management is implemented across all of distribution. • Targeted cat and rabbit control at key bilby sites. • Minimise loss of bilby habitat, and maintain connectivity between bilby populations. Full assessment information Background information 2018 population trajectory assessment 1. Conservation status and taxonomy 8. Expert elicitation for population trends 2. Conservation history and prospects 9. Immediate priorities from 2019 3. Past and current trends 10. Contributors 4. Key threats 11. Legislative documents 5. Past and current management 12. References 6. Support from the Australian Government 13. Citation 7. Measuring progress towards conservation The primary purpose -
The Role of the Reintroduction of Greater Bilbies (Macrotis Lagotis)
The Role of the Reintroduction of Greater Bilbies (Macrotis lagotis) and Burrowing Bettongs (Bettongia lesueur) in the Ecological Restoration of an Arid Ecosystem: Foraging Diggings, Diet, and Soil Seed Banks Janet Newell School of Earth and Environmental Sciences University of Adelaide May 2008 A thesis submitted for the degree of Doctor of Philosophy Table of Contents ABSTRACT...............................................................................................................................................I DECLARATION.......................................................................................................................................III ACKNOWLEDGEMENTS ....................................................................................................................... V CHAPTER 1 INTRODUCTION ............................................................................................................1 1.1 MAMMALIAN EXTINCTIONS IN ARID AUSTRALIA ...............................................................................1 1.2 ROLE OF REINTRODUCTIONS .......................................................................................................2 1.3 ECOSYSTEM FUNCTIONS.............................................................................................................3 1.4 ECOSYSTEM FUNCTIONS OF BILBIES AND BETTONGS .....................................................................4 1.4.1 Consumers..........................................................................................................................4 -
Narrogin Area Provides an Interesting and Wide Brookton Within the Wheatbelt
2 TOOLIBIN AND WALBYRING LAKES (DEC) BIRDWATCHING AROUND NARROGIN The last chance of saving the last freshwater lake The Narrogin area provides an interesting and wide Brookton within the Wheatbelt. One needs to get the feet wet range of habitats, encompassing all aspects of the here. However, the chance of seeing the declared natural environment. Wildflowers, marsupials (night 4 N rare Freckled Duck and eight other species of ducks spotlighting) and over 100 species of birds are found Pingelly along with Nankeen Night-Heron surely outweighs throughout this area. 3 the discomfort. Twenty-two species have been A recorded breeding including Great Crested Grebe, Natural bushland is being added to by ongoing lb a Wandering n conservation programs in various parts of the Central y Eastern Great Egret, Nankeen Night-Heron and H w Yellow-billed Spoonbill. At Walbyring Lake, White- South area. Many farmers are now fencing off y 9 Yornaning Wickepin bushland and there is a real move to construct and necked Heron have been recorded breeding in the 1 8 maintain corridors between these areas throughout Cuballing Casuarinas. the wheatbelt. Three notable sites are being assisted 3 TUTANNING (DEC) by the Natural Landcare Program; Toolibin Lake (2), NARROGIN 6 2 14 Mile Brook, adjoining Dryandra Woodland (1) and 7 A difficult reserve to enter, however worth the rough Yornaning Dam (9). Keep an eye open for these and and sandy roads. There is a good range of habitats Williams Highbury other Landcare projects as you travel through the 5 including Wandoo, Casuarina, Mallet and heathland. region. The local community (often assisted by White-eared, Brown-headed and White-naped visitors) is justifiably proud of these revegetated Honeyeater are present as well as Blue-breasted areas and the ongoing work to control the ravages of Fairy-wren and Scarlet Robin. -
Digging and Soil Turnover by a Mycophagous Marsupial
ARTICLE IN PRESS Journal of Arid Environments Journal of Arid Environments 56 (2004) 569–578 www.elsevier.com/locate/jnlabr/yjare Digging and soil turnover bya mycophagous marsupial Mark J. Garkaklis*, J.S. Bradley, R.D. Wooller Biological Sciences and Biotechnology, Murdoch University, Western Australia 6150, Australia Received 21 October 2002; received in revised form 17 March 2003; accepted 7 April 2003 Abstract The woylie Bettongia penicillata is a small (1 kg) kangaroo-like marsupial that digs to obtain the fruiting bodies of fungi. The number of woylies in a 60 ha area of sclerophyll woodland in south-western Australia was estimated using mark-recapture at 3 month intervals over 3 successive years. The number of new diggings by woylies, determined at the same intervals, allowed an assessment of the rate of digging per individual. This varied three-fold from 38 to 114 diggings per individual per night, with no consistent seasonality. On average, each woylie displaced 4.8 tonnes of soil annually. r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Population size; Bettongia penicillata; Sclerophyll woodland; Biopedturbation 1. Introduction Digging and burrowing are behaviours common to manymammals, particularly in arid and semi-arid ecosystems (Kinlaw, 1999; Whitford and Kay, 1999). For example, the heteromyid rodents, gophers and prairie dogs of North America (Steinberger and Whitford, 1983; Heske et al., 1993; Mooneyand Hobbs, 1994, pp. 73–81; Guo, 1996) porcupines and ibex in Israel (Gutterman and Herr, 1981; Yair and Rutin, 1981; Gutterman, 1997; Alkon, 1999) badgers in Europe (Neal and Roper, 1991, pp. 89–106) aardvark and porcupine in southern Africa (Dean and Milton, 1991; Devilliers and van Aarde, 1994) and the potoroid rat-kangaroos in Australia (Claridge and May, 1994; Garkaklis et al., 1998, 2000) all dig or burrow. -
Australia's Biodiversity and Climate Change
Australia’s Biodiversity and Climate Change A strategic assessment of the vulnerability of Australia’s biodiversity to climate change A report to the Natural Resource Management Ministerial Council commissioned by the Australian Government. Prepared by the Biodiversity and Climate Change Expert Advisory Group: Will Steffen, Andrew A Burbidge, Lesley Hughes, Roger Kitching, David Lindenmayer, Warren Musgrave, Mark Stafford Smith and Patricia A Werner © Commonwealth of Australia 2009 ISBN 978-1-921298-67-7 Published in pre-publication form as a non-printable PDF at www.climatechange.gov.au by the Department of Climate Change. It will be published in hard copy by CSIRO publishing. For more information please email [email protected] This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the: Commonwealth Copyright Administration Attorney-General's Department 3-5 National Circuit BARTON ACT 2600 Email: [email protected] Or online at: http://www.ag.gov.au Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Climate Change and Water and the Minister for the Environment, Heritage and the Arts. Citation The book should be cited as: Steffen W, Burbidge AA, Hughes L, Kitching R, Lindenmayer D, Musgrave W, Stafford Smith M and Werner PA (2009) Australia’s biodiversity and climate change: a strategic assessment of the vulnerability of Australia’s biodiversity to climate change. -
2008-09, the Zoo’S Fundraising Program, Wildlife During the Year the Board Also Commenced an Continues to Go from Strength to Strength
contents Zoological Parks Authority ANNUAL REPORT 2009 Zoological Parks Authority ANNUAL REPORT 2009 contents Our Purpose To secure long term populations of species in natural environments while engaging the community in global conservation action. Perth Zoo Location In line with State Government requirements, This work is copyright. It may be reproduced in 20 Labouchere Road Perth Zoo’s annual report – the Zoological whole or in part for study or training purposes if Parks Authority Annual Report 2008-2009 – is an acknowledgment of the source is included. South Perth, Western Australia. published in an electronic format with limited Such use must not be for the purpose of sale or Postal Address use of graphics and illustrations to help minimise commercial exploitation. Subject to the Copyright download times. Act, reproduction, storage in a retrieval system PO Box 489 or transmission in any form by any means of Perth Zoo encourages people to use recycled South Perth any part of the work other than for the purposes paper if they print a copy of this report or above is not permitted without prior written Western Australia 6951 sections of it. For the convenience of readers and authorisation from the Zoological Parks Authority. to minimise download times and print outs, the Contact Numbers annual report has been presented in chapters, as Information about this report and requests and Telephone (08) 9474 0444 well as the entire document. The annual report is inquiries concerning reproduction should be Facsimile (08) 9474 4420 presented in PDF format. All sections, except the addressed to: financial statements, are also presented in Word [email protected] Debra Read format.