Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A B ell & Howell Iiiformation Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 University of Oklahoma Graduate College A Geography of Extinction: Patterns in the Contraction of Geographic Ranges A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Robert B. ChanneU Norman, Oklahoma 1998 UMI Number: 9905629 UMI Microform 9905629 Copyright 1999, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, Ml 48103 Copyright by ROBERT B. CHANNELL 1998 AU Rights Reserved. A Geography of Extinction: Patterns in the Contraction of Geographic Ranges A Dissertation APPROVED FOR THE DEPARTMENT OF ZOOLOGY I Preface This dissertation is presented as three separate chapters. Each chapter will be submitted to a refereed journal. The first and second chapters will be submitted to American Naturalist. The third chapter will be submitted to Conservation Biology. Chapters have been formatted as appropriate for the given journal. IV Acknowledgments I would like to acknowledge my major professor Mark Lomoiino who has been a model co-investigator on this project. His persistence, patience, and friendship have ably guided me through this project and I am greatly indebted. I also like to thank Dr. Marvin Baker, Dr. Nicholas Czaplewski, Dr. Mike Kaspari, Dr. Kathryn Pandora, and Dr. Caryn Vaughn for serving on my committee. Their comments and suggestions have improved this project immeasurably. I extend my gratitude to Dr. Michael Mares and Dr. Gary Schnell who have both been generous with their time, experience, and equipment. Dr. Victor Hutchison deserves special consideration for his administration of the GAANN fellowships and his valued advice. Dr. Michael Scott, University of Idaho, freely provided quality data and enthusiasm for this project. Melissa Songer and Tabbie Franklin both worked briefly on this project with me and their contributions are appreciated. I also thank the Department of Zoology for providing me a place and the time to grow. I would like to thank my friends and family for their support throughout my education. Special thanks goes to my parents whose encouragement and love never flagged. I thank my wife Kim for her patience and love. When I felt like it was all falling apart, she held it together. I was fortunate to receive a Department of Education Graduate Assistance in Areas of National Need Fellowship. Many of the resources that this grant provided me made this work possible. I also received support from the Department of Zoology in a Graduate Teaching Assistantship. Lastly, Dr. Mark Lomoiino generously provided support on several of his grants for me. VI Table of Contents Page List of Tables............................................................................................ ix List of Illustrations ................................................................................ x A bstract......................................................................................................... xii Chapter 1 A b stra c t...................................................................................... 2 Introduction .................................................................................... 4 Methods and Materials ............................................................... 7 R e s u l t s ..............................................................................................11 D is c u s s io n ........................................................................................15 Conservation Implications .................................................................21 Acknowledgments ............................................................................23 Literature C ited ..................................................................................24 Chapter 2 A b stra c t............................................................................................. 48 Introduction ........................................................................................50 Methods and Materials ...................................................................... 58 R e s u l t s ............................................................................................. 60 D is c u s s io n ........................................................................................62 vu Acknowledgments ..............................................................................70 Literature C ited ........................................................................... 71 Chapter 3 A b stra c t...............................................................................................98 Introduction ........................................................................................ 100 Methods and Materials ....................................................................... 105 R e s u l t s ..............................................................................................114 D is c u s s io n ........................................................................................121 Acknowledgments .............................................................................136 Literature C ited .................................................................................. 137 Appendices Appendix 1 .........................................................................................195 V lll List of Tables Table Page Chapter 2 1. Linear and quadratic terms of polynomial regressions . 79 Chapter 3 1. Definition of terms used in the m odel ......................................... 143 2. Model variables for each s im u la tio n ......................................... 146 IX List of Illustrations Illustration Page Chapter 1 1. Illustration of methods used to quantify geographic ranges 34 2. Historical and extant ranges of seven species ..............................35 3. Proportion of species with a peripheral bias by region . 42 4. Proportion of species with a peripheral bias by islands . 43 5. Proportion of species with a peripheral bias by taxa . 44 6. Historical and extant of two species from Guam.. 45 Chapter 2 1. Graphical comparison of the two hypotheses .... 84 2. Index of centrality vs. percent contracted .................................... 86 3. Sequential contractions for three species .................................... 87 4. Vectors of intermediate and final stages of contraction . 90 5. Distributions of simulated data for each hypothesis. 91 6. Regression of C vs. contracted (%) for all species . 93 7. Regression of C vs. contracted (%) for birds and mammals 94 8. Regression of C vs. contracted (%) for each region . 95 Chapter 3 1. Schematic diagram depicting model structure .... 152 2. Spread of Europeans, rabbits, and foxes in Australia 153 3. Simulated distributions of the American burying beetle 155 4. Simulated distributions of the American chestnut 159 5. Simulated distributions of the whooping crane .... 163 6. Simulated distributions of the little spotted kiwi 167 7. Simulated distributions of the Lord Howe woodhen 171 8. C vs. contracted (%) for exploratory simulations .... 175 9. Simulated distributions of the golden bandicoot. 180 10. Simulated distributions of the b ilb y .............................. 182 11. Simulated distributions of the n u m b at .........................184 12. Simulated distributions of the western barred bandicoot . 186 13. Simulated distributions of the short-tailed hopping mouse 188 14. C vs. contracted (%) for historical simulations .... 190 XI Abstract I examined the contraction of geographic ranges in 245 species. Remnant portions of the geographic range tended to persist in the periphery of the species' historical range. Larger patches of the geographic ranges persisted longer than smaller patches. For species that occurred on both the mainland and islands, islands maintained their populations better than the mainland. All of the continents except Africa, had significantly more species persist in the periphery
Recommended publications
  • PLAGUE STUDIES * 6. Hosts of the Infection R
    Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume.
    [Show full text]
  • Lindsay Masters
    CHARACTERISATION OF EXPERIMENTALLY INDUCED AND SPONTANEOUSLY OCCURRING DISEASE WITHIN CAPTIVE BRED DASYURIDS Scott Andrew Lindsay A thesis submitted in fulfillment of requirements for the postgraduate degree of Masters of Veterinary Science Faculty of Veterinary Science University of Sydney March 2014 STATEMENT OF ORIGINALITY Apart from assistance acknowledged, this thesis represents the unaided work of the author. The text of this thesis contains no material previously published or written unless due reference to this material is made. This work has neither been presented nor is currently being presented for any other degree. Scott Lindsay 30 March 2014. i SUMMARY Neosporosis is a disease of worldwide distribution resulting from infection by the obligate intracellular apicomplexan protozoan parasite Neospora caninum, which is a major cause of infectious bovine abortion and a significant economic burden to the cattle industry. Definitive hosts are canid and an extensive range of identified susceptible intermediate hosts now includes native Australian species. Pilot experiments demonstrated the high disease susceptibility and the unexpected observation of rapid and prolific cyst formation in the fat-tailed dunnart (Sminthopsis crassicaudata) following inoculation with N. caninum. These findings contrast those in the immunocompetent rodent models and have enormous implications for the role of the dunnart as an animal model to study the molecular host-parasite interactions contributing to cyst formation. An immunohistochemical investigation of the dunnart host cellular response to inoculation with N. caninum was undertaken to determine if a detectable alteration contributes to cyst formation, compared with the eutherian models. Selective cell labelling was observed using novel antibodies developed against Tasmanian devil proteins (CD4, CD8, IgG and IgM) as well as appropriate labelling with additional antibodies targeting T cells (CD3), B cells (CD79b, PAX5), granulocytes, and the monocyte-macrophage family (MAC387).
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Complement Function and Expression in the Red-Tailed
    Complement Function and Expression in the Red-Tailed Phascogale (Phascogale calura) Oselyne Tsuey Wei Ong B. Med. Sc. (Biomedical Sciences), M. Sc. (Conservation Biology) Submitted for the completion of a Doctor of Philosophy degree at the Western Sydney University October 2016 TABLE OF CONTENTS Table of Figures............................................................................................................. i Table of Tables ............................................................................................................ iv Acknowledgements ...................................................................................................... v Statement of Authentication .................................................................................... vii Preface ....................................................................................................................... viii Publications ................................................................................................................. ix Conference and Seminar Presentations ..................................................................... x Abstract ......................................................................................................................... 1 Introduction .................................................................................................................. 5 1.1 Marsupials as Mammals ......................................................................................... 6 1.1.2 Red-Tailed
    [Show full text]
  • ANSWER KEY for the MAMMAL SEARCH and FIND
    ANSWER KEY: MAMMAL SEARCH AND FIND A) An animal you already know about B) An animal you have never heard of C) An animal whose name starts with the same letter as your name. (You may use the full species name, the general name, or the scientific name for example: Sloth Bear [Ursus ursinus] is okay for the letters S, B and U.) There are multiple answers for many letters, but here is one for each. A anteater B bongo C coati D dibatag E echidna F fanaloka G giraffe H hedgehog I Indian pangolin J jumping mouse K kultarr L llama M mongoose N numbat O okapi P panda Q quoll katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND R raccoon S sloth T tamandua U Ursus ursinus (sloth bear) V vicuna W wildebeest X Xenarthran* Y yellow footed rock wallaby Z zorilla *this is a bit of a cheat Xenarthra is the superorder that include anteaters, tree sloths and armadillo. There were 6 in the show. D) 7 spotted animals African civet fanaloka quoll king cheetah common genet giraffe spotted cuscus E) 2 flying animals Chapin's free-tailed bat Bismarck masked flying fox F) 2 swimming animals Southern Right Whale Commerson's Dolphin katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND katytanis.com #AMisclassificationOfMammals © Katy Tanis 2018 ANSWER KEY: MAMMAL SEARCH AND FIND G) 2 mammals that lay eggs short beaked echidna western long beaked echidna H) 2 animals that look similar to skunks and are also stinky long fingered trick Zorilla I) 1 animal that smells like buttered
    [Show full text]
  • Small Mammal Population Dynamics and Range Shifts with Climate
    RESOURCES, DATA RESOLUTION AND SMALL MAMMAL RANGE DYNAMICS Nerissa Haby B. Env. Sci. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy April 2012 Ecology and Evolutionary Biology University of Adelaide, Australia Table of contents Table of contents i Abstract ii Acknowledgements iii Declaration iv How well do existing evaluations of climate change impacts on range Introduction 1 dynamics represent Australian small mammals? Improving performance and transferability of small-mammal species Chapter 1. 8 distribution models Chapter 2. Specialist resources are key to improving small mammal distribution models 22 Scale dependency of metapopulation models used to predict climate change Chapter 3. 35 impacts on small mammals Lessons from the arid zone: using climate variables to predict small mammal Chapter 4. 52 occurrence in hot, dry environments Ecosystem dynamics, evolution and dependency of higher trophic organisms Chapter 5. 69 on resource gradients Conclusion 79 References 89 Appendix 106 Publications associated with this thesis 153 i Abstract Extensive range shift and mass extinctions resulting from climate change are predicted to impact all biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have been observed in empirical and modelling investigations that continue to under-represent small mammal species (Introduction). Given small mammals are primary or higher order consumers and often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital for generating accurate estimates of range shift. This idea was investigated through the influence of coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate- and five arid-zone small mammals.
    [Show full text]
  • Birds, Butterflies & Wildflowers of the Dordogne
    Tour Report France – Birds, Butterflies & Wildflowers of the Dordogne 15 – 22 June 2019 Woodchat shrike Lizard orchid Spotted fritillary (female) River Dordogne near Lalinde Compiled by David Simpson & Carine Oosterlee Images courtesy of: Mike Stamp & Corine Oosterlee 01962 302086 [email protected] www.wildlifeworldwide.com Tour Leaders: David Simpson & Corine Oosterlee Day 1: Arrive Bergerac; travel to Mauzac & short local walk Saturday 15 June 2019 It was a rather cool, cloudy and breezy afternoon as the Ryanair flight touched down at Bergerac airport. Before too long the group had passed through security and we were meeting one another outside the arrivals building. There were only five people as two of the group had driven down directly to the hotel in Mauzac, from their home near Limoges in the department of Haute-Vienne immediately north of Dordogne. After a short walk to the minibus we were soon heading off through the fields towards Mauzac on the banks of the River Dordogne. A song thrush sang loudly as we left the airport and some of us had brief views of a corn bunting or two on the airport fence, whilst further on at the Couze bridge over the River Dordogne, several crag martins were flying. En route we also saw our first black kites and an occasional kestrel and buzzard. We were soon parking up at the Hotel Le Barrage where Amanda, the hotel manager, greeted us, gave out room keys and helped us with the suitcases. Here we also met the other couple who had driven straight to the hotel (and who’d already seen a barred grass snake along the riverbank).
    [Show full text]
  • Butterflies of Croatia
    Butterflies of Croatia Naturetrek Tour Report 11 - 18 June 2018 Balkan Copper High Brown Fritillary Balkan Marbled White Meleager’s Blue Report and images compiled by Luca Boscain Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Butterflies of Croatia Tour participants: Luca Boscain (leader) and Josip Ledinšćak (local guide) with 12 Naturetrek clients Summary The week spent in Croatia was successful despite the bad weather that affected the second half of the holiday. The group was particularly patient and friendly, having great enthusiasm and a keen interest in nature. We explored different habitats to find the largest possible variety of butterflies, and we also enjoyed every other type of wildlife encountered in the field. Croatia is still a rather unspoilt country with a lot to discover, and some almost untouched areas still use traditional agricultural methods that guaranteed an amazing biodiversity and richness of creatures that is lost in some other Western European countries. Day 1 Monday 11th June After a flight from the UK, we landed on time at 11.45am at the new Zagreb airport, the ‘Franjo Tuđman’. After collecting our bags we met Ron and Susan, who had arrived from Texas a couple of days earlier, Luca, our Italian tour leader, and Josip, our Croatian local guide. Outside the terminal building we met Tibor, our Hungarian driver with our transport. We loaded the bus and set off. After leaving Zagreb we passed through a number of villages with White Stork nests containing chicks on posts, and stopped along the gorgeous riverside of Kupa, not far from Petrinja.
    [Show full text]
  • Convergent Evolution of Himalayan Marmot with Some High-Altitude Animals Through ND3 Protein
    animals Article Convergent Evolution of Himalayan Marmot with Some High-Altitude Animals through ND3 Protein Ziqiang Bao, Cheng Li, Cheng Guo * and Zuofu Xiang * College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; [email protected] (Z.B.); [email protected] (C.L.) * Correspondence: [email protected] (C.G.); [email protected] (Z.X.); Tel.: +86-731-5623392 (C.G. & Z.X.); Fax: +86-731-5623498 (C.G. & Z.X.) Simple Summary: The Himalayan marmot (Marmota himalayana) lives on the Qinghai-Tibet Plateau and may display plateau-adapted traits similar to other high-altitude species according to the principle of convergent evolution. We assessed 20 species (marmot group (n = 11), plateau group (n = 8), and Himalayan marmot), and analyzed their sequence of CYTB gene, CYTB protein, and ND3 protein. We found that the ND3 protein of Himalayan marmot plays an important role in adaptation to life on the plateau and would show a history of convergent evolution with other high-altitude animals at the molecular level. Abstract: The Himalayan marmot (Marmota himalayana) mainly lives on the Qinghai-Tibet Plateau and it adopts multiple strategies to adapt to high-altitude environments. According to the principle of convergent evolution as expressed in genes and traits, the Himalayan marmot might display similar changes to other local species at the molecular level. In this study, we obtained high-quality sequences of the CYTB gene, CYTB protein, ND3 gene, and ND3 protein of representative species (n = 20) from NCBI, and divided them into the marmot group (n = 11), the plateau group (n = 8), and the Himalayan marmot (n = 1).
    [Show full text]
  • Technical Summary
    YEREYMENTAU WIND POWER PLANT, Yereymentau, Kazakhztan Non - Technical Summary Final Report November 2014 Samruk Green Energy LLP 010000 Republic of Kazakhstan Astana, Kabanbai batyr ave., 15А, Block В TABLE OF CONTENT 1 INTRODUCTION 1 2 SUMMARY OF THE PROJECT 2 2.1 SITE SELECTION CRITERIA 2 2.2 PROJECT DESCRIPTION 2 2.3 CO2 AVOIDANCE 4 2.4 OTHER WIND FARM PROJECTS IN THE AREA 4 3 SUMMARY OF IMPACTS AND MIITIGATION MEASURES 5 3.1 SOIL AND GROUNDWATER 5 3.2 SURFACE WATER 6 3.3 AIR QUALITY 6 3.4 BIODIVERSITY AND NATURE CONSERVATION 6 3.5 LANDSCAPE AND VISUAL IMPACTS 10 3.6 CULTURAL HERITAGE 10 3.7 SOCIOECONOMIC IMPACTS 11 3.8 COMMUNITY HEALTH, SAFETY AND SECURITY 12 3.8.1 Environmental Noise 12 3.8.2 Shadow Flicker 13 3.8.3 Ice Throw 14 3.8.4 Electromagnetic Interference 14 3.8.5 Public Access 14 3.9 CUMULATIVE IMPACTS 15 3.9.1 Cumulative Impacts on Biodiversity 15 3.9.2 Cumulative Noise Impacts 16 3.9.3 Cumulative Impacts Shadow Flicker 16 3.9.4 Cumulative Impacts on Landscape 16 3.10 IMPACTS DURING DECOMMISSIONING 17 4 ENVIRONMENTAL AND SOCIAL MANAGEMENT 18 SAMRUK GREEN ENERGY LLP NON-TECHNICAL SUMMARY NOVEMBER 2014 YEREYMENTAU WIND POWER PLANT, KAZAKHSTAN 1 INTRODUCTION Samruk Green Energy LLP (“SGE”) is in process of developing Yereymentau Wind Farm Project (the “Project”) south-east of Yereymentau Town, approximately 130 km east of Astana, in Akmola Region, Kazakhstan. The Project will have a capacity of 50 MW. This Non-Technical Summary (“NTS”) presents the main findings of the assessment of the environmental and social impacts performed for the Project, providing an overview of the potential impacts associated with the construction, operation and decommissioning of the Project, and the measures identified to avoid or mitigate potential impacts to acceptable levels.
    [Show full text]
  • Mammals of the Avon Region
    Mammals of the Avon Region By Mandy Bamford, Rowan Inglis and Katie Watson Foreword by Dr. Tony Friend R N V E M E O N G T E O H F T W A E I S L T A E R R N A U S T 1 2 Contents Foreword 6 Introduction 8 Fauna conservation rankings 25 Species name Common name Family Status Page Tachyglossus aculeatus Short-beaked echidna Tachyglossidae not listed 28 Dasyurus geoffroii Chuditch Dasyuridae vulnerable 30 Phascogale calura Red-tailed phascogale Dasyuridae endangered 32 phascogale tapoatafa Brush-tailed phascogale Dasyuridae vulnerable 34 Ningaui yvonnae Southern ningaui Dasyuridae not listed 36 Antechinomys laniger Kultarr Dasyuridae not listed 38 Sminthopsis crassicaudata Fat-tailed dunnart Dasyuridae not listed 40 Sminthopsis dolichura Little long-tailed dunnart Dasyuridae not listed 42 Sminthopsis gilberti Gilbert’s dunnart Dasyuridae not listed 44 Sminthopsis granulipes White-tailed dunnart Dasyuridae not listed 46 Myrmecobius fasciatus Numbat Myrmecobiidae vulnerable 48 Chaeropus ecaudatus Pig-footed bandicoot Peramelinae presumed extinct 50 Isoodon obesulus Quenda Peramelinae priority 5 52 Species name Common name Family Status Page Perameles bougainville Western-barred bandicoot Peramelinae endangered 54 Macrotis lagotis Bilby Peramelinae vulnerable 56 Cercartetus concinnus Western pygmy possum Burramyidae not listed 58 Tarsipes rostratus Honey possum Tarsipedoidea not listed 60 Trichosurus vulpecula Common brushtail possum Phalangeridae not listed 62 Bettongia lesueur Burrowing bettong Potoroidae vulnerable 64 Potorous platyops Broad-faced
    [Show full text]