Redalyc.Maca Lepidium Meyenii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lyonia Preserve Plant Checklist
Lyonia Preserve Plant Checklist Volusia County, Florida Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum Bitterweed Helenium amarum Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia Nolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia Cudweed Gnaphalium falcatum Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus Fireweed Erechtites hieracifolia Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) Ragweed Ambrosia artemisiifolia Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia Spanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra Sand Holly Ilex ambigua Bromeliaceae (Airplant) Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata Spanish Moss Tillandsia usneoides Arecaceae (Palm) Saw Palmetto Serenoa repens Cactaceae (Cactus) Scrub Palmetto Sabal etonia Prickly Pear Opuntia humifusa Asclepiadaceae (Milkweed) Caesalpinceae Butterfly Weed Asclepias -
Physiological Responses of Lepidium Meyenii Plants to Ultraviolet-B
Huarancca Reyes et al. BMC Plant Biology (2019) 19:186 https://doi.org/10.1186/s12870-019-1755-5 RESEARCH ARTICLE Open Access Physiological responses of Lepidium meyenii plants to ultraviolet-B radiation challenge Thais Huarancca Reyes1* , Andrea Scartazza2, Antonio Pompeiano3 and Lorenzo Guglielminetti1,4 Abstract Background: Ultraviolet-B (UV-B) radiation can affect several aspects ranging from plant growth to metabolic regulation. Maca is a Brassicaceae crop native to the Andes growing in above 3500 m of altitude. Although maca has been the focus mainly due to its nutraceutical properties, it remains unknown how maca plants tolerate to harsh environments, such as strong UV-B. Here, we present the first study that reports the physiological responses of maca plants to counteract and recover to repeated acute UV-B irradiation. Results: In detail, plants were daily exposed to acute UV-B irradiation followed by a recovery period under controlled conditions. The results showed that repeated acute UV-B exposures reduced biomass and photosynthetic parameters, with gradual senescence induction in exposed leaves, reduction of young leaves expansion and root growth inhibition. Negative correlation between increased UV-B and recovery was observed, with marked production of new biomass in plants treated one week or more. Conclusions: A differential UV-B response was observed: stress response was mainly controlled by a coordinated source-sink carbon allocation, while acclimation process may require UV-B-specific systemic defense response reflected on the phenotypic plasticity of maca plants. Moreover, these differential UV-B responses were also suggested by multifactorial analysis based on biometric and physiological data. -
Plant Essential Oils and Formamidines As Insecticides/Acaricides: What Are the Molecular Targets? Wolfgang Blenau, Eva Rademacher, Arnd Baumann
Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Wolfgang Blenau, Eva Rademacher, Arnd Baumann To cite this version: Wolfgang Blenau, Eva Rademacher, Arnd Baumann. Plant essential oils and formamidines as in- secticides/acaricides: what are the molecular targets?. Apidologie, Springer Verlag, 2012, 43 (3), pp.334-347. 10.1007/s13592-011-0108-7. hal-01003531 HAL Id: hal-01003531 https://hal.archives-ouvertes.fr/hal-01003531 Submitted on 1 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2012) 43:334–347 Review article * INRA, DIB and Springer-Verlag, France, 2011 DOI: 10.1007/s13592-011-0108-7 Plant essential oils and formamidines as insecticides/ acaricides: what are the molecular targets? 1 2 3 Wolfgang BLENAU , Eva RADEMACHER , Arnd BAUMANN 1Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe-Universität Frankfurt am Main, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany 2Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany 3Institute of Complex Systems—Cellular Biophysics-(ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany Received 16 May 2011 – Revised 29 August 2011 – Accepted 21 October 2011 Abstract – The parasitic mite Varroa destructor is the main cause of the severe reduction in beekeeping during the last few decades. -
Edible Flowers — Swansons Nursery - Seattle's Favorite Garden Store Since 1924
edible flowers — Swansons Nursery - Seattle's Favorite Garden Store Since 1924 << BACK TO NW GARDENING TIPS EDIBLE FLOWERS FOR THE NORTHWEST GARDENER Edible flowers are a lot of fun to experiment with, yet little (and much contradictory) information exists about them. This list excludes all known poisonous and questionable flowers as well as most tropical flowers and some edible flowers with little culinary merit. Please note that this list pertains only to the edibility of the flower portion of the plant. Finally, never eat any plant or flower you cannot identify with certainty. Note: Treat eating edible flowers as you might mushrooms. Different people have different sensitivities—try a small piece to check out your personal reaction. Anise Hyssop - Agastache foeniculum Arugula - Erusca vesicaria Basil - Ocimum basilicum Batchelor Button - Centaurea cyanus Bee Balm - Monarda didyma Begonia - Begonia hybrid Borage - Borago officinalis Brassicas - Brassica spp. Calendula - Calendula officinalis Clove Pink - Dianthus caryophyllus Chamomile - Matricaria recutita Chervil - Anthriscus cerefolium Chive - Allium schoenorasum https://www.swansonsnursery.com/edible-flowers[1/24/2020 8:53:33 AM] edible flowers — Swansons Nursery - Seattle's Favorite Garden Store Since 1924 Garlic Chives - Allium tuberosum Chrysanthemums - Chrysanth. x morifolium Citrus Blossoms - Citrus limon, C. sinensis Clover, Red - Trifolium pratense Coriander - Coriandrum sativum Cress - Lepidium sativum Daisy, English - Bellis perennis Dandelion - Taraxacum officinale Day Lily - Hemerocallis fulva Dill - Anethum graveolens Elderberry - Sambucus canadensis ALL ELDER FLOWERS ARE EDIBLE. BLUE ELDER BERRIES ARE EDIBLE. RED ELDER BERRIES ARE POISONOUS! Fennel - Foeniculum vulgare Fuchsia - Fuchsia hybrid Garlic Mustard - Allaria petiolata Geranium, Scented - Pelargoniums Gladiolas - Gladiolus spp. DO NOT EAT GLADIOLUS GANDAVENSIS. -
Noxious Weed List
Class A Weeds: Non-native species whose silverleaf nightshade Solanum elaeagnifolium ►knapweed, spotted Centaurea stoebe common catsear Hypochaeris radicata Washington distribution is still limited. Eradication ■small-flowered Impatiens parviflora ■►knotweed, Bohemian Polygonum x bohemicum common groundsel Senecio vulgaris and prevention are the highest priorities. jewelweed ►knotweed, giant Polygonum sachalinense common St. Johnswort Hypericum perforatum Eradication of all Class A plants is required by law. Spanish broom Spartium junceum ►knotweed, Himalayan Polygonum polystachyum ►common tansy Tanacetum vulgare Class B Weeds: Non-native species presently Syrian beancaper Zygophyllum fabago ►knotweed, Japanese Polygonum cuspidatum ►common teasel Dipsacus fullonum limited to portions of the State. Species are Texas blueweed Helianthus ciliaris ►kochia Kochia scoparia curlyleaf pondweed Potamogeton crispus designated for control in regions where they are not thistle, Italian Carduus pycnocephalus ►lesser celandine Ficaria verna English hawthorn Crataegus monogyna yet widespread. Preventing new infestations in thistle, milk Silybum marianum ►loosestrife, garden Lysimachia vulgaris ►English and Irish ivy - Hedera helix 'Baltica’, these areas is a high priority. In regions where a thistle, slenderflower Carduus tenuiflorus ► four cultivars only 'Pittsburgh', & 'Star'; H. Class B species is already abundant, control is loosestrife, purple Lythrum salicaria decided locally, with containment the primary goal. variable-leaf milfoil Myriophyllum -
Herb & Flower Plant List
2317 Evergreen Rd. Herb & Flower Louisa, Va 23093 (540)967-1165 (434)882-2648 Plant List www.forrestgreenfarm.com COMMON NAME : LATIN NAME COMMON NAME : LATIN NAME COMMON NAME : LATIN NAME Abutilon, Biltmore Ballgown : Abutilon Blueberry Blueray : Vaccinium corymbosum 'Blueray' Echinacea, Primadonna Deep Rose : Echinacea purpurea Agastache, Rosie Posie : Agastache rupestris 'Rosie Posie'Boneset : Eupatorium perfoliatum Echinacea, Primadonna White : Echinacea purpurea Ageratum, Blue Horizon F1 : ageratum houstonianum Borage : Borago Officinalis Echinacea, Purpurea : Agrimony : Agrimonia eupatoria Boxwood, Green Beauty : Buxus mic. v. japo. Echinops, Globve Thistle : Echinops bannaticus 'Ritro' Amaranth, burgundy : Amaranth sp. Burdock, Gobo : Arctium lappa Elderberry, Bob Gordon : Sambucus canadensis spp. Amaranthus Love-lies-Bleeding : An=maranthus caudatusCalendula : Calendula officinalis Elderberry, Wyldewood : Sambucus canadensis spp. Angelica : Angelica archangelica Calendula, HoriSun Yellow : Calendula officinalis Elderberry, York : Sambucus canadensis spp. Angelonia, blue : Angelonia Calibrachoa : Elecampane : Inula helenium Anise : pimpinella anisum Caraway : Carum carvi Eucalyptus, Silver Drop : Anise-Hyssop : Agastache foeniculum Catmint : Nepeta mussinii Evening Primrose : Oenothera biennis Argyranthemum : Butterfly Yellow Catnip : Nepeta Cataria Fennel, Bronze & Green : Foeniculum vulgare Arnica : Arnica montana Celandine : Chelidonium majus Feverfew : Tanacetum Parthenium Artichoke, Imperial Star : Cynara scolymus Celosia, -
Original Paper Hypoxia Tolerance and Fatigue Relief Produced By
_ Food Science and Technology Research, 22 (5), 611 621, 2016 Copyright © 2016, Japanese Society for Food Science and Technology doi: 10.3136/fstr.22.611 http://www.jsfst.or.jp Original paper Hypoxia Tolerance and Fatigue Relief Produced by Lepidium meyenii and its Water-soluble Polysaccharide in Mice 1 2 1 1 1 1 Xiao-Feng CHEN , Yan-Yun LIU , Min-Jie CAO , Ling-Jing ZHANG , Le-Chang SUN , Wen-Jin SU and 1* Guang-Ming LIU 1College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial, Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China 2Xiamen Everbright Biotechnology Ltd, 68 Hubinbei Road, Xiamen, Fujian, 361001, China Received November 14, 2015 ; Accepted January 24, 2016 The aim of the present study was to investigate the effects of Lepidium meyenii (maca) on hypoxia tolerance and fatigue relief, and to determine its active constituents. The results showed that, in the mouse model, maca powder could significantly prolong hypoxia time (HT) and forced swim time (FST) and optimize blood sugar ratio (BSR), liver glycogen (LG), muscle glycogen (MG), blood lactic acid, and lactic dehydrogenase. Based on these results, aqueous extracts and maca water-soluble polysaccharide (MWP) were isolated. The total sugar content of MWP is 90.41 ± 2.55%, and the main monosaccharide component is glucose (79.88%). In the mouse model, HT (40.76 ± 7.97 min), FST (48.32 ± 10.76 min), BSR (4.49 ± 4.04%), LG (11.27 ± 0.61 mg/g), and MG (1.45 ± 0.17 mg/g) were all significantly enhanced in groups given maca powder compared to the control group (p < 0.05). -
Chemical Analysis of Lepidium Meyenii (Maca) and Its Effects On
molecules Article Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology y in Stallions 1, 1, , 2 3 Simona Tafuri z, Natascia Cocchia * z, Domenico Carotenuto , Anastasia Vassetti , Alessia Staropoli 3,4, Vincenzo Mastellone 1, Vincenzo Peretti 1, Francesca Ciotola 1, Sara Albarella 1 , Chiara Del Prete 1, Veronica Palumbo 1, Luigi Esposito 1 , Francesco Vinale 3,4 and Francesca Ciani 1 1 Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; [email protected] (S.T.); [email protected] (V.M.); [email protected] (V.P.); [email protected] (F.C.); [email protected] (S.A.); [email protected] (C.D.P.); [email protected] (V.P.); [email protected] (L.E.); [email protected] (F.C.) 2 UNMSM, Universidad Nacional Mayor San Marcos, Lima 11-0058, Peru; [email protected] 3 Institute for Sustainable Plant Protection, National Research Council, 80055 Portici (Na), Italy; [email protected] (A.V.); [email protected] (A.S.); [email protected] (F.V.) 4 Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy * Correspondence: [email protected]; Tel.: +39-81-253-6017; Fax: +39-81-253-6042 Running title: Maca: Chemical Analysis and Biological Activity. y The authors contributed equally to this work. z Academic Editor: Francesca Giampieri Received: 15 March 2019; Accepted: 21 May 2019; Published: 23 May 2019 Abstract: The present study was conducted to assess the chemical composition of Yellow Maca (Lepidium meyenii) and its biological activity on stallions following oral administration of hypocotyl powder. -
Control of Lepidium Latifolium and Restoration of Native Grasses
AN ABSTRACf OF THE THESIS OF Mar2aret S. Laws for the degree of Master of Science in Ran2eland Resources presented on November 23. 1999. Title: Control of Leoidium latifolium and Restoration of Native Grasses. ( Redacted for Privacy Abstract approved: _ Lepidium latifolium L. (perennial pepperweed, LEPLA) is an exotic invader throughout western North America. At Malheur National Wildlife Refuge (MNWR) in southeast Oregon, it has invaded about 10% of meadow habitats that are important for wildlife. This study's objective was to determine the most effective and least environmentally harmful treatment to control this weed and restore native vegetation using integrated pest management techniques. During summer 1995, nine 0.24-ha plots in three meadows infested with L latifolium at MNWR were randomly assigned to a treatment with metsulfuron methyl herbicide, chlorsulfuron herbicide, disking, burning, herbicide (metsulfuron methyl or chlorsulfuron) then disking, herbicide (metsulfuron methyl or chlorsulfuron) then burning, or untreated. Changes in L latifolium ramet densities and basal cover of vegetation, litter, and bare soil were evaluated in 1996 and 1997. Sheep grazing was evaluated as a treatment for reduction in flower production along roadsides and levees during summer 1997. Revegetation treatments of seeding, transplanting or natural (untreated) revegetation were attempted at plots treated with chlorsulfuron, disking, chlorsulfuron then disking, and at untreated plots from October 1996 through September 1997. Chlorsulfuron was the most effective control treatment with greater than 97% reduction in L latifolium ramet densities two years after treatment Metsulfuron methyl was an effective control (greater than 93% reduction) for one year. Disking was ineffective. Burning was ineffective at the one site where sufficient fine fuels existed to carry fire. -
Cristancho-Pinilla, Edwin Arvey.Pdf
A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Benefitting from Biodiversity-Based Innovation Edwin Arvey Cristancho-Pinilla Doctor of Philosophy SPRU – Science and Technology Policy Research University of Sussex Submitted November 2017 ii I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. [ORIGINAL SIGNED] Signature: ……………………………………… iii UNIVERSITY OF SUSSEX Edwin Arvey Cristancho-Pinilla Doctor of Philosophy in Science and Technology Policy Benefitting from Biodiversity-Based Innovation: ABSTRACT This thesis argues for the need for a more comprehensive discussion of biodiversity use in relation to enhancing benefits of this use for biodiverse countries and promoting more equitable sharing of these benefits. The findings from this doctoral research reveal that biodiversity-based innovation is a social shaping process that has resulted in large benefits. The cumulative capability to use species from biodiversity gives meanings that contribute to the species shaping process, with organisations and institutional changes providing direction and increasing the rate of the shaping process. -
Weed Notes: Lepidium Latifolium Tunyalee Morisawa the Nature
Weed Notes: Lepidium latifolium TunyaLee Morisawa The Nature Conservancy Wildland Weeds Management and Research http://tncweeds.ucdavis.edu 18 June 1999 Biology: Lepidium latifolium (Family: Brassicaceae) is an extremely invasive weed commonly called perennial pepperweed, perennial peppercress, perennial peppergrass, broad-leaved peppergrass, peppergrass, slender perennial peppercress, tall whitetop or dittander. A native from North Africa to Norway and east to the Himalayan region of southern Asia, this weed has invaded every state in the U.S. except for Arizona. In the western U.S., L. latifolium was first discovered in Montana in 1935 and in California in 1936. It is believed that L. latifolium was introduced to the west as a contaminant in sugarbeet seed. L. latifolium readily invades disturbed areas and bare soils. The weed is spread by seed and rhizomes. In pastures, infestation is probably from contaminated hay or from movement of seeds in irrigation water from riparian habitats. Germination rates increase when the seeds are near the soil surface and are exposed to fluctuating temperatures. The seeds do not have a hard seed coat and so longevity in the soil may be short (several years). Therefore, reinfestation from a seed bank in the soil after population control may be low. However, new growth from rhizomes or succulent woody crowns does occur during the late winter. By mid-May the stems can reach 0.5 m in height. L. latifolium is similar to hoary cress, Cardaria draba (L.) Desv. However, L. latifolium grows vigorously both above and below ground. Also, the leaves are hairless and the edges are not serrated. -
Vegetable Virus Problems in South Florida As Related to Weed Science
168 FLORIDA STATE HORTICULTURAL SOCIETY, 1971 18. Sylvester, E. S. 1955. Lettuce mosaic virus trans 20. Zink, F. W., R. G. Grogan, and J. E. Welch. 1956. mission by the green peach aphid. Phytopathology 45:357-370. The effect of the percentage of seed transmission upon sub 19. Weber, G. F. and A. C. Foster. 1928. Diseases of sequent spread of lettuce mosaic virus. Phytopathology lettuce, romaine, escarole and endive. Florida Agr. Exp. 46:662-664. Sta. Bull. 195: 30 pp. VEGETABLE VIRUS PROBLEMS IN SOUTH FLORIDA AS RELATED TO WEED SCIENCE J. R. Orsenigo and T. A. Zitter Both crop and weed plants may serve as reser voirs for the maintenance and/or propagation of IF AS Agricultural Research and Education Center plant viruses. Viral infestations of plants can be Belle Glade mitigated through eradication of cultivated and wild host reservoirs, control of virus vectors, and Abstract use of healthy or resistant propagules. Previous Most plant viruses require living plant ma work in Florida has pointed-up the importance of terial for survival and propagation. Some viruses eradication of wild host reservoirs in the control may infect a wide range of crop and weed plants of virus diseases of celery, pepper, tomato, and while others are highly specific in their host cucurbits (1, 9, 11, 12, 13). Theoretically, the relationships. Plant viral infections can be miti simultaneous eradication of crops, weeds, and gated by eradication of cultivated and wild host their propagules from a specific area should elimi reservoirs, control of virus vectors, and use of nate viral infections.