Subtidal Porifera Porifera Porifera Cnidaria

Total Page:16

File Type:pdf, Size:1020Kb

Subtidal Porifera Porifera Porifera Cnidaria Porifera • Haliclona ecbasis • Purplish intertidal subtidal sponge • Worldwide distribution porifera Porifera • Suberites • Myxilla incrustans sp. • Rough scallop • Often on sponge shells of • Can deter hermit predators like crabs, starfish and subtidal octopus Cnidaria • Haliclystus salpinx • Pleurobrachia bachei Stalked jellyfish • Sea gooseberry • 3 cm • Predator, 1.5 cm • Found commonly diameter, tentacles on eelgrass, rock, up to 15 cm long and algae. • Match the color of their substrate 1 Platyhelminthes Mollusca • Kaburakia excelsa • Rossia pacifica • Giant leaf flatworm • One of the largest • Stubby squid marine flatworms • subtidal (16-370 m) • Band of eyespots around entire margin, • Sometimes swims negatively phototactic. in shallow water at • Mid-intertidal to subtidal • Under rocks, among night mussels Mollusca Mollusca • Enteroctopus dofleini • Octopus • Giant pacific octopus rubescens • Largest on earth • Red octopus • Upto 150 pounds, 23 • Intertidal to 120 m feet long Mollusca Mollusca • Onchidella borealis • Hermissenda • Leather “limpet” crassicornis • Intertidal, has lungs • Nudibranch instead of gills • Carnivore, and • Spends a lot of time sometimes a cannibal out of water • Aggressive, if two meet especially in caves “fights” occur with lunging and biting 2 Mollusca Mollusca • Armina californica • Dirona albolineata • nudibranch • White lined dorina • Mostly subtidal to • Intertidal to 37m 230 m Mollusca Mollusca • Archidoris • Anisodoris nobilis montereyensis • sea lemon • False sea lemon • Can be up to 26 cm • penetrating, fruity odor, which may be used to fend off predators Mollusca Mollusca • Hopkinsia • Laila cockerelli rosacea • Cockerell’s • Hopkin’s rose nudibranch • Low intertidal to • Subtidal to 6m intertidal • Feeds on a rose colored bryozoan 3 Mollusca Mollusca • Haliotis rufescens • red abalone • Elysia • The swimming veliger larvae chew on coralline algae, hedgpethi which releases GABA (gamma-aminobutyric acid) • Hedgpeth’s • This chemical induces the veligers to settle and sea hare metamorphose into juveniles. The abalone scrapes only the surface off • Related to the the coralline algae, so it “leaves that actually benefits the algae. • The animal obtains a red dye crawl” (rufescin) from the algae, which it incorporates into its shell for the pink color. The color probably helps camouflage the abalone from predators such as octopus Mollusca Arthropoda • Euspira lewisii • Kelp crab • Moon snail • one of the largest to be found • Pugettia intertidally in the Northwest • It does not usually stay inside the gracilis shell long because it cannot breathe. • It crawls across sandflats and mudflats with its huge foot partly extended in front of the shell like a snowplow, pushing through the sediments in search of clams. Echinodermata Ochre starfish • Pycnopodia helianthoides • Sunflower star • Voracious predator • http://www.youtube.c om/watch?v=i0_jCM Ygwyo • http://www.youtube.c om/watch?v=Tys0w 3CgApQ • http://www.youtube.c om/watch?v=ALaMo S_vvNE 4 Echinodermata Echinodermata • Strongylocentrotus franciscanus • Red sea urchin • Parastichopus • these urchins live over 100 years, and found some near Vancouver californicus Island that may be 200 years old • A prime food for sea otters. • Harvested for • http://www.youtube.com/watch?v=MXQF7dhVDSY&feature=related • http://www.youtube.com/watch?v=b44_-bxr07w sale in Asia Cnidaria • Anthopleura ellegantissima Lower intertidal • Aggregating anemone • Intertidal • Algal symbionts Purple sea urchin Middle intertidal 5 Mytilus californianus Gooseneck barnacles Nucella dog whelk Dogwinkle Tegula snail Balanus barnacle 6 Owl limpet Upper intertidal Limpets, periwinkles, brown Arthropoda barnacles • Pachygrapsus crassipes • Lined shore crab • intertidal 7.
Recommended publications
  • Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
    Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone.
    [Show full text]
  • Enhancement of Red Abalone Haliotis Rufescens Stocks at San Miguel Island: Reassessing a Success Story
    MARINE ECOLOGY PROGRESS SERIES Vol. 202: 303–308, 2000 Published August 28 Mar Ecol Prog Ser NOTE Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story Ronald S. Burton1,*, Mia J. Tegner 2 1Marine Biology Research Division and 2 Marine Life Research Group, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA ABSTRACT: Outplanting of hatchery-reared juvenile abalone quences of such practices? How can the success of has received much attention as a strategy for enhancement of costly outplants be assessed? Such questions point to depleted natural stocks. Most outplants attempted to date conflicting needs regarding the genetic composition of appear to have been unsuccessful. However, based on genetic analyses of a population sample taken in 1992, it has outplanted organisms. Where large numbers of organ- recently been suggested that a 1979 outplanting of red isms are artificially released into a depleted popula- abalone Haliotis rufescens, on the south side of San Miguel tion, substantial changes in the genetic composition of Island (California, USA), was successful and probably sus- natural populations may occur (e.g., Tringali & Bert tained the fishery there through the 1980s. We resampled the San Miguel population in 1999 and found no genetic signa- 1998, Utter 1998). A variety of scenarios suggest that ture of the outplants. Allelic frequencies in our 1999 sample wholesale changes in genetic composition of natural closely resemble those observed in a pre-outplant 1979 south- populations may be undesirable at best and potentially ern California sample and two 1999 northern California pop- disastrous.
    [Show full text]
  • John E. Morris Ally Described in 1860 As Sarcoptilus (Ptilosarcus) Gurneyi
    AN ABSTRACT OF THE THESIS OF ROBERT EDWARD BATIEfor the MASTER OF SCIENCE (Name) (Degree) in Zoology presented on (Major) (Late) Title:TAXONOMY AND SOME ASPECTS OF THE BIOLOGY OF THE SEA PEN PTLLOSARCUS GURNEYI (CNIDARIA, PENNATULAC EA) Redacted for Privacy Abstract approved: Redacted for Privacy John E. Morris At present there is much confusion regarding the correct genus and species name for the shallow water, West coast sea pen.Origin- ally described in 1860 as Sarcoptilus (Ptilosarcus) gurneyi Gray, this sea pen has subsequently been placed inthree different genera, one of which has had three spelling variations, and in three different species groups under three spelling variations.Not only is there ex- tensive synonymy, but also homonymy exists between the generic names of a sea pen and a moth. The purpose of this investigation was to determine the valid taxonomic name and to supply more information about the sea pen with respect to its anatomy and biology. Sea pens were collected from Puget Sound, Washington, and from Monterey Bay, California,Their internal and external morpholo.- gies were compared; no detectable differences were found between the two populations, except in coloration.Coloration was not considered to be a stable enough character upon which tobase species differences. The taxonomic history of the West coast sea pen waspresented and reasons given for the subordination of the genusLeioptilus to the genus Ptilosarcus.Ptilosarcus gurneyi was recommended as the proper and valid binomen forthe shallow water sea pen with all other names being subordinated. Taxonomy and Some Aspects of the Biology of the Sea Pen Ptilosarcus gurn (Cnidaria, Pennatulacea) by Robert Edward Batie A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1971 APPROVED: Redacted for Privacy Dr.
    [Show full text]
  • Nudibranch Range Shifts Associated with the 2014 Warm Anomaly in the Northeast Pacific
    Bulletin of the Southern California Academy of Sciences Volume 115 | Issue 1 Article 2 4-26-2016 Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Jeffrey HR Goddard University of California, Santa Barbara, [email protected] Nancy Treneman University of Oregon William E. Pence Douglas E. Mason California High School Phillip M. Dobry See next page for additional authors Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Marine Biology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Goddard, Jeffrey HR; Treneman, Nancy; Pence, William E.; Mason, Douglas E.; Dobry, Phillip M.; Green, Brenna; and Hoover, Craig (2016) "Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific," Bulletin of the Southern California Academy of Sciences: Vol. 115: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol115/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Cover Page Footnote We thank Will and Ziggy Goddard for their expert assistance in the field, Jackie Sones and Eric Sanford of the Bodega Marine Laboratory for sharing their observations and knowledge of the intertidal fauna of Bodega Head and Sonoma County, and David Anderson of the National Park Service and Richard Emlet of the University of Oregon for sharing their respective observations of Okenia rosacea in northern California and southern Oregon.
    [Show full text]
  • Status Review of the Pinto Abalone - Decision
    Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only.
    [Show full text]
  • Some Opisthobranchs from West Africa
    SOME OPISTHOBRANCHS FROM WEST AFRICA BY KATHLEEN M. WHITE, Ph. D., M. Se. (Reading) 12 SOME OPISTHOBRANCHS FR OM WEST AFRICA The following report is based upon material submitted to me by the Director oi' the Institut Royal des 'Sciences Naturelles of Belgium whom I wish to thank for the opportunity of examining it. It comprises material eollected by the training-ship « Mercator » on lier 9th voyage in 1935-6, her llth voyage in 1936-7 and her 14th voyage in 1937-8. Additional specimens were eollected by the Belgian expédition to the South Atlantic in 1948-49 and from West Afriea in 1953. The région covered is the west coast of Africa from Bio de Oro in the north to Angola on the south, and it lies roughly between longitudes 17° West to 13° East and latitudes 26° North and 15° South. The depths extend from shore down to 50 fathoms. The Opisthobranchs of tliis région have received no attention. Collections from Morocco in the north have been reported upon bv A. Pruvot-Fol in 1927 and 1953 and bv J. Risbec in 1931. Collections from S. Africa have been described bv R. Bergh in 1908, K. H. Barnard in 1927, C. H. O'Donoghue in 1928 and N. B. Eales and H. Engel in 1935. References to these reports have heen made and to A. Vayssiere's accounts of the Mediterranean fauna publislied between 1865 and 1919. In all twenty-six species of Opisthobranchs have been recognised of which eighteen are previously described species, two are new varieties of know species and four appear to be new species.
    [Show full text]
  • Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)
    GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially
    [Show full text]
  • The Feeding Habits of Pleurobranchaea
    THE FEEDING HABITS OF PLEUROBRANCHAEA CALIFORNICA MACFARLAND, 1966 (OPISTHOBRANCHIA, NOTASPIDEA) IN MONTEREY BAY, CALIFORNIA A Thesis Presented to the Faculty of California State University, Stanislaus and Moss Landing Marine Laboratories In Partial Fulfillment Of the Requirements for the Degree Master of Science in Marine Science By Karen E. Battle August, 1994 ABSTRACT The natural diet of Pleurobranchaea californica was studied in Monterey Bay, California. Specimens were collected from January 29 to November 9, 1992, at depths of 30-100 meters, using an otter trawl and an interfacial trawl. Three hundred fty-six animals were collected and ranged in size from 0.01-411 grams with most of the animals weighing between 1.0 and 50 grams. The gut contents were examined and 16 different prey types were identified. Thirty-three percent of the guts were empty. Many animals had sediment in their guts, which was presumed to be a result of their ingesting or attempting to ingest prey items that live on or below the substratum. P. californica a euryphagic predator with pronounced cannibalism. Individual Index of Relative Importance values showed that opisthobranchs made up the largest portion of the diet of P. californica. The opisthobranchs in the diet included P. californica (as prey), Armina californica and Aglaja sp. The diets were similar specimens of P. californica collected at all depths, but did change depending upon the season in which the animals were collected, and their size. ii ACKNOWLEDGEMENTS I would like to thank my committee members, Dr. James Nybakken, Dr. Gregor Cailliet, and Dr. Pamela Roe for their guidance and advice throughout this study.
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • The Morphology of Ismaila Monstrosa Bergh (Copepoda)
    AN ABSTRACT OF THE THESIS OF FRANCIS PETER BELCIK for the M. S. inZoology (Name) (Degree) (Major) Date thesis is presented l'/ Ak I Title THE MORPHOLOGY OF ISMAILA MONSTROSA BERGH (COPEPODA) Abstract approvedRedacted for Privacy The morphology of a rather rare parasitic copepod was studied.Ismaila monstrosa Bergh, an endoparasitic copepod was found in the nudibranch, Antiopella fusca,at Coos Bay, Oregon. Many anatomical features were found, which were different from previous descriptions.Males were described for the first time. Young males lacked the gonadal lobes found on the dorsal sides of adult males.Both sexes had similar mouthparts, differing only in size.These mouthparts consisted, like those of Splanchnotrophus, of a bifid lab rum, a pair of simple mandibles, a pair of maxillae and a triangular labium with side processes.There was only a single pair of maxillae and they are unusual in that they were found to be setigerous and two-jointed.The distal portion of this characteristic maxilla was biramous, the smaller member often obscure.Because of this and other anatomical factors, I proposed a new variety Ismaila monstrosa var. pacifica and a newsubfamily, the Ismailinae. Although the female possessed three pairs of lateral appendages, the male lacked these, having only the two pairs of ventral appendages. In the female specimens there were two pairs of ventral appendages or !?stomach_armsh?.The first pair was bifurcate, the second pair trifurcate.In the male specimens the first pair was uniramous and the second pair unequally biramous. The dige.stive system was found to be incomplete in both sexes.
    [Show full text]
  • The Opisthobranchs of Cape Arago. Oregon. with Notes
    THE OPISTHOBRANCHS OF CAPE ARAGO. OREGON. WITH NOTES ON THEIR NATURAL HISTORY AND A SUMMARY OF BENTHIC OPISTHOBRANCHS KNOWN FROM OREGON by JEFFREY HAROLD RYAN GODDARD A THESIS Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science December 1983 !tIl. ii I :'" APPROVED: -------:n:pe:;-;t::;e:;:-rt;l;1T:-.JF~r:aaD:inkk--- i I-I 1 iii An Abstract of the Thesis of Jeffrey Harold Ryan Goddard for the degree of Master of Science in the Department of Biology to be taken December 1983 TITLE: THE OPISTHOBRANCHS OF CAPE ARAGO, OREGON, WITH NOTES ON THEIR NATURAL HISTORY AND A SUM}~Y OF BENTHIC OPISTHOBRANCHS KNOWN FROM OREGON Approved: Peter W. Frank The opisthobranch molluscs of Oregon have been little studied, and little is known about the biology of many species. The present study consisted of field and laboratory observations of Cape Arago opistho- branchs. Forty-six species were found, extending the range of six north- ward and two southward. New food records are presented for nine species; an additional 20 species were observed feeding on previously recorded prey. Development data are given for 21 species. Twenty produce plank- totrophic larvae, and Doto amyra produces lecithotrophic larvae, the first such example known from Eastern Pacific opisthobranchs. Hallaxa chani appears to be the first eudoridacean nudibranch known to have a subannual life cycle. Development, life cycles, food and competition, iv ranges, and the ecological role of nudibranchs are discussed. Nudi- branchs appear to significantly affect the diversity of the Cape Arago encrusting community.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]