Notes for Frustums a Frustum of a Cone Is the Part That Remains When The

Total Page:16

File Type:pdf, Size:1020Kb

Notes for Frustums a Frustum of a Cone Is the Part That Remains When The Notes for Frustums A frustum of a cone is the part that remains when the A frustum of a pyramid is the part that remains when vertex is cut off by a plane parallel to its base. the vertex is cut off by a plane parallel to its base. Original is Square-based Pyramid 26 in,. ? cm. 24 cm. 12 cm 10 in. 12 cm 20 in. 18 cm ? cm 18 cm 1. How is the cut-off pyramid related to the original 1. How is the cut-off cone related to the original cone? pyramid? _________________________________ ___________________________________________ 2. What is the similarity ratio for the two pyramids? 2. What is the similarity ratio for the two cones? ____ _________ 3. Use the similarity ratio to find the height of the 3. What is the ratio of the volume of the cut-off cutoff cone. ___________ pyramid to the original pyramid? _______________ 4. What is the height of the frustum? ______________ 4. If the volume of the original pyramid is 256 cm.3, find the volume of the cut-off pyramid. __________ 5. Can you find the surface area of the frustum by What is the volume of the frustum? ___________ subtracting the surface area of the cut-off cone from the surface area of the original cone? ______________ 5. What is the ratio of the volume of the frustum to the Why or why not? _______________________ original pyramid? _____________ 6. Can you find the volume of the frustum by 6. The ratios in (3) and (5) must add up to ________. subtracting the volume of the cut-off cone from the volume of the original cone? _________________ 7. What shape are the lateral faces of the frustum? _________________ 7. Find the volume of the frustum to the nearest tenth. 8. If the lateral edge of the original pyramid is 26 in., find the height of the trapezoidal lateral faces. __________. Find the LA for the frustum. ________ 8. If you cut along the slant height of the original cone and then unwrap the lateral area of the frustum, what shape will it be? ________________ Find the lateral area of the frustrum. ___________________ 9. Find the surface area of the frustum. ___________ Example 1 Find the exact volume and find the surface area to the nearest whole number. 3 cm 10 cm 8 cm Example 2 Find the exact volume and the surface area to the nearest whole number. 8 cm. 9 cm. 12 cm. Example 3 - A frustum is formed by slicing a cone Example 4 – A frustum is formed by slicing a parallel to its base. The ratio of the heights of the square-based pyramid parallel to its base and cutoff cone to the original cone is 3:5. If the volume bisecting the height of the pyramid. If the lateral of the original cone is 625 cu. in., what is the volume area of the original pyramid is 400 sq. in., what is of the frustum? the lateral area of the frustum? .
Recommended publications
  • THE GEOMETRY of PYRAMIDS One of the More Interesting Solid
    THE GEOMETRY OF PYRAMIDS One of the more interesting solid structures which has fascinated individuals for thousands of years going all the way back to the ancient Egyptians is the pyramid. It is a structure in which one takes a closed curve in the x-y plane and connects straight lines between every point on this curve and a fixed point P above the centroid of the curve. Classical pyramids such as the structures at Giza have square bases and lateral sides close in form to equilateral triangles. When the closed curve becomes a circle one obtains a cone and this cone becomes a cylindrical rod when point P is moved to infinity. It is our purpose here to discuss the properties of all N sided pyramids including their volume and surface area using only elementary calculus and geometry. Our starting point will be the following sketch- The base represents a regular N sided polygon with side length ‘a’ . The angle between neighboring radial lines r (shown in red) connecting the polygon vertices with its centroid is θ=2π/N. From this it follows, by the law of cosines, that the length r=a/sqrt[2(1- cos(θ))] . The area of the iscosolis triangle of sides r-a-r is- a a 2 a 2 1 cos( ) A r 2 T 2 4 4 (1 cos( ) From this we have that the area of the N sided polygon and hence the pyramid base will be- 2 2 1 cos( ) Na A N base 2 4 1 cos( ) N 2 It readily follows from this result that a square base N=4 has area Abase=a and a hexagon 2 base N=6 yields Abase= 3sqrt(3)a /2.
    [Show full text]
  • A Technology to Synthesize 360-Degree Video Based on Regular Dodecahedron in Virtual Environment Systems*
    A Technology to Synthesize 360-Degree Video Based on Regular Dodecahedron in Virtual Environment Systems* Petr Timokhin 1[0000-0002-0718-1436], Mikhail Mikhaylyuk2[0000-0002-7793-080X], and Klim Panteley3[0000-0001-9281-2396] Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences», Moscow, Russia 1 [email protected], 2 [email protected], 3 [email protected] Abstract. The paper proposes a new technology of creating panoramic video with a 360-degree view based on virtual environment projection on regular do- decahedron. The key idea consists in constructing of inner dodecahedron surface (observed by the viewer) composed of virtual environment snapshots obtained by twelve identical virtual cameras. A method to calculate such cameras’ projec- tion and orientation parameters based on “golden rectangles” geometry as well as a method to calculate snapshots position around the observer ensuring synthe- sis of continuous 360-panorama are developed. The technology and the methods were implemented in software complex and tested on the task of virtual observing the Earth from space. The research findings can be applied in virtual environment systems, video simulators, scientific visualization, virtual laboratories, etc. Keywords: Visualization, Virtual Environment, Regular Dodecahedron, Video 360, Panoramic Mapping, GPU. 1 Introduction In modern human activities the importance of the visualization of virtual prototypes of real objects and phenomena is increasingly grown. In particular, it’s especially required for training specialists in space and aviation industries, medicine, nuclear industry and other areas, where the mistake cost is extremely high [1-3]. The effectiveness of work- ing with virtual prototypes is significantly increased if an observer experiences a feeling of being present in virtual environment.
    [Show full text]
  • Cones, Pyramids and Spheres
    The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 YEARS 910 Cones, Pyramids and Spheres (Measurement and Geometry : Module 12) For teachers of Primary and Secondary Mathematics 510 Cover design, Layout design and Typesetting by Claire Ho The Improving Mathematics Education in Schools (TIMES) Project 2009‑2011 was funded by the Australian Government Department of Education, Employment and Workplace Relations. The views expressed here are those of the author and do not necessarily represent the views of the Australian Government Department of Education, Employment and Workplace Relations. © The University of Melbourne on behalf of the International Centre of Excellence for Education in Mathematics (ICE‑EM), the education division of the Australian Mathematical Sciences Institute (AMSI), 2010 (except where otherwise indicated). This work is licensed under the Creative Commons Attribution‑NonCommercial‑NoDerivs 3.0 Unported License. 2011. http://creativecommons.org/licenses/by‑nc‑nd/3.0/ The Improving Mathematics Education in Schools (TIMES) Project MEASUREMENT AND GEOMETRY Module 12 CONES, PYRAMIDS AND SPHERES A guide for teachers - Years 9–10 June 2011 Peter Brown Michael Evans David Hunt Janine McIntosh Bill Pender Jacqui Ramagge YEARS 910 {4} A guide for teachers CONES, PYRAMIDS AND SPHERES ASSUMED KNOWLEDGE • Familiarity with calculating the areas of the standard plane figures including circles. • Familiarity with calculating the volume of a prism and a cylinder. • Familiarity with calculating the surface area of a prism. • Facility with visualizing and sketching simple three‑dimensional shapes. • Facility with using Pythagoras’ theorem. • Facility with rounding numbers to a given number of decimal places or significant figures.
    [Show full text]
  • Lateral and Surface Area of Right Prisms 1 Jorge Is Trying to Wrap a Present That Is in a Box Shaped As a Right Prism
    CHAPTER 11 You will need Lateral and Surface • a ruler A • a calculator Area of Right Prisms c GOAL Calculate lateral area and surface area of right prisms. Learn about the Math A prism is a polyhedron (solid whose faces are polygons) whose bases are congruent and parallel. When trying to identify a right prism, ask yourself if this solid could have right prism been created by placing many congruent sheets of paper on prism that has bases aligned one above the top of each other. If so, this is a right prism. Some examples other and has lateral of right prisms are shown below. faces that are rectangles Triangular prism Rectangular prism The surface area of a right prism can be calculated using the following formula: SA 5 2B 1 hP, where B is the area of the base, h is the height of the prism, and P is the perimeter of the base. The lateral area of a figure is the area of the non-base faces lateral area only. When a prism has its bases facing up and down, the area of the non-base faces of a figure lateral area is the area of the vertical faces. (For a rectangular prism, any pair of opposite faces can be bases.) The lateral area of a right prism can be calculated by multiplying the perimeter of the base by the height of the prism. This is summarized by the formula: LA 5 hP. Copyright © 2009 by Nelson Education Ltd. Reproduction permitted for classrooms 11A Lateral and Surface Area of Right Prisms 1 Jorge is trying to wrap a present that is in a box shaped as a right prism.
    [Show full text]
  • Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method
    Universal Journal of Educational Research 3(12): 1034-1048, 2015 http://www.hrpub.org DOI: 10.13189/ujer.2015.031213 Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method Suphi Onder Butuner Department of Elementary Mathematics Education, Bozok University, Turkey Copyright © 2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Within recent years, history of mathematics dynamic structure of mathematics [1, 2, 3, 4, 5, 6, 7]. It is (HoM) has become an increasingly popular topic. Studies stressed that history of mathematics will enrich the repertoire have shown that student reactions to it depend on the ways of teachers and develop their pedagogical content knowledge they use history of mathematics. The present action research [7, 8]. Jankvist [5] (2009) explains the use of history of study aimed to make students deduce volume rules of mathematics both as a tool and as a goal. History-as-a-tool frustum pyramids using the dissection method. Participants arguments are mainly concerned with learning of the inner were 24 grade eight students from Trabzon. Observations, issues of mathematics (mathematical concepts, theories, informal interviews and feedback forms were used as data methods, formulas), whereas history-as-a-goal arguments collection tools. Worksheets were distributed to students and are concerned with the use of history as a self-contained goal. the research was conducted in 3 class hours. Student views From the history-as-a-goal point of view, knowing about the on the activities were obtained through a written feedback history of mathematics is not a primary tool for learning form consisting of 4 questions.
    [Show full text]
  • Pentagonal Pyramid
    Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base.
    [Show full text]
  • Module-03 / Lecture-01 SOLIDS Introduction- This Chapter Deals with the Orthographic Projections of Three – Dimensional Objects Called Solids
    1 Module-03 / Lecture-01 SOLIDS Introduction- This chapter deals with the orthographic projections of three – dimensional objects called solids. However, only those solids are considered the shape of which can be defined geometrically and are regular in nature. To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups- Polyhedron- A polyhedron is defined as a solid bounded by planes called faces, which meet in straight lines called edges. Regular Polyhedron- It is polyhedron, having all the faces equal and regular. Tetrahedron- It is a solid, having four equal equilateral triangular faces. Cube- It is a solid, having six equal square faces. Octahedron- It is a solid, having eight equal equilateral triangular faces. Dodecahedron- It is a solid, having twelve equal pentagonal faces. Icosahedrons- It is a solid, having twenty equal equilateral triangular faces. Prism- This is a polyhedron, having two equal and similar regular polygons called its ends or bases, parallel to each other and joined by other faces which are rectangles. The imaginary line joining the centre of the bases is called the axis. A right and regular prism has its axis perpendicular to the base. All the faces are equal rectangles. 1 2 Pyramid- This is a polyhedron, having a regular polygon as a base and a number of triangular faces meeting at a point called the vertex or apex. The imaginary line joining the apex with the centre of the base is known as the axis. A right and regular pyramid has its axis perpendicular to the base which is a regular plane.
    [Show full text]
  • Uniform Panoploid Tetracombs
    Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs.
    [Show full text]
  • About This Booklet on Surface Areas and Volumes
    About This Booklet on Surface1 Areas and Volumes About This Booklet on Surface Areas and Volumes This Particular Booklet has been designed for the students of Math Class 10 (CBSE Board). However, it will also help those who have these chapters in their curriculum or want to gain the knowledge and explore the concepts. This Booklet explains: 1. Cube, Cuboid and Cylinder 2. Cone and Frustum 3. Sphere and Hemisphere 4. Combination of solids This Booklet also covers: 1. MCQs 2. Questions with Solutions 3. Questions for practice and 4. QR Codes to scan and watch videos on Surface Areas and Volumes QR codes when scanned with mobile scanner take you to our YouTube channel Let’sTute (www.youtube.com/letstute) where you can watch our free videos (need internet connection) on the topic. For Surface Areas and Volumes, in total, we have 8 videos which are accessible on several other platforms as described on the back cover of this Booklet. However, if there is any query, feel free to connect with us on the details given on the last page. Some other documents are also available: About Let’s Tute Let’sTute (Universal Learning Aid) is an E-learning company based in Mumbai, India. (www.letstute.com) We create content for Mathematics, Biology, Physics, Environmental Science, Book-Keeping & Accountancy and also a series on value education known as V2lead 2 13 .1 Cube, Cuboid and Cylinder Scan to watch the video on INTRODUCTION Surface area and Volume Surface Area: It is the sum of total exposed area of a three dimensional solid object.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Triangulations and Simplex Tilings of Polyhedra
    Triangulations and Simplex Tilings of Polyhedra by Braxton Carrigan A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 4, 2012 Keywords: triangulation, tiling, tetrahedralization Copyright 2012 by Braxton Carrigan Approved by Andras Bezdek, Chair, Professor of Mathematics Krystyna Kuperberg, Professor of Mathematics Wlodzimierz Kuperberg, Professor of Mathematics Chris Rodger, Don Logan Endowed Chair of Mathematics Abstract This dissertation summarizes my research in the area of Discrete Geometry. The par- ticular problems of Discrete Geometry discussed in this dissertation are concerned with partitioning three dimensional polyhedra into tetrahedra. The most widely used partition of a polyhedra is triangulation, where a polyhedron is broken into a set of convex polyhedra all with four vertices, called tetrahedra, joined together in a face-to-face manner. If one does not require that the tetrahedra to meet along common faces, then we say that the partition is a tiling. Many of the algorithmic implementations in the field of Computational Geometry are dependent on the results of triangulation. For example computing the volume of a polyhedron is done by adding volumes of tetrahedra of a triangulation. In Chapter 2 we will provide a brief history of triangulation and present a number of known non-triangulable polyhedra. In this dissertation we will particularly address non-triangulable polyhedra. Our research was motivated by a recent paper of J. Rambau [20], who showed that a nonconvex twisted prisms cannot be triangulated. As in algebra when proving a number is not divisible by 2012 one may show it is not divisible by 2, we will revisit Rambau's results and show a new shorter proof that the twisted prism is non-triangulable by proving it is non-tilable.
    [Show full text]
  • SOLID GEOMETRY CAMBRIDGE UNIVERSITY PRESS Eon^On: FETTER LANE, E.G
    QA UC-NRLF 457 ^B 557 i35 ^ Ml I 9^^ soLiTf (itlOMK'l'RV BY C. GODFREY, HEAD M STER CF THE ROY I ^1 f i ! i-ORMERI.Y ; EN ;R MAI :: \: i^;. ; \MNCHEST1-R C(.1J,E(;E an:; \\\ A. SIDDON , MA :^1AN r MASTER .AT ..\:--:: : ', l-ELLi)V* i OF JESL'S COI.' E, CAMf. ^'ambridge : at tlie 'Jniversity Press 191 1 IN MEMORIAM FLORIAN CAJORI Q^^/ff^y^-^ SOLID GEOMETRY CAMBRIDGE UNIVERSITY PRESS Eon^on: FETTER LANE, E.G. C. F. CLAY, Manager (fFtjinfturgi) : loo, PRINCES STREET iSerlin: A. ASHER AND CO. ILjipjig: F. A. BROCKHAUS ^tia lork: G. P. PUTNAM'S SONS iSombas anU Calcutta: MACMILLAN AND CO., Ltd. A /I rights resei'ved SOLID GEOMETRY BY C. GODFREY, M.V.O. ; M.A. w HEAD MASTER OF THE ROYAL NAVAL COLLEGE, OSBORNE FORMERLY SENIOR MATHEMATICAL MASTER AT WINCHESTER COLLEGE AND A. W. SIDDONS, M.A. ASSISTANT MASTER AT HARROW SCHOOL LATE FELLOW OF JESUS COLLEGE, CAMBRIDGE Cambridge : at the University Press 191 1 Camfariljge: PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS. CAJORl PREFACE "It is a great defect in most school courses of geometry " that they are entirely confined to two dimensions. Even *' if solid geometry in the usual sense is not attempted, every ''occasion should be taken to liberate boys' minds from "what becomes the tyranny of paper But beyond this "it should be possible, if the earlier stages of the plane "geometry work are rapidly and effectively dealt with as "here suggested, to find time for a short course of solid " geometry.
    [Show full text]