The Perpendicular Distance Between a Vertex of a Triangle and the Side Opposite That Vertex

Total Page:16

File Type:pdf, Size:1020Kb

The Perpendicular Distance Between a Vertex of a Triangle and the Side Opposite That Vertex Altitude of a Triangle The perpendicular distance between a vertex of a triangle and the side opposite that vertex. Sometimes called the height of a triangle. Also, sometimes the line segment itself is referred to as the altitude. Base (of a Polygon) For two-dimensional figures, any side can be a base. Typically, however, the bottom side, on which the polygon ‘sits,’ is called the base. Coordinate Plane A two-dimensional surface on which points are plotted and located by their x and y coordinates. Coordinate Point of a Plane A pair of numbers defining the position of a point on a two- dimensional plane. Cone A three dimensional figure with a circular or elliptical base and one vertex. Converse of Pythagorean Theorem If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, the triangle is a right triangle. Cubed Root One of three identical factors of a number that is the product of those factors. Cylinder A three dimensional object with two parallel, congruent, circular bases. Deductive Reasoning The process by which one makes conclusions using known facts, definitions, rules, or properties. Diameter The distance across a circle through its center. The line segment that includes the center and whose endpoints lie on the circle. Distance Formula An application of the Pythagorean Theorem based on the distance between two points. Geometric Solid The collective term of all bounded three dimensional geometric figures. Height of Solids The vertical height (or altitude) which is the perpendicular distance from the top down to the base. Hypotenuse The hypotenuse is the side of a right triangle that is directly across from the right angle. Irrational A real number whose decimal form is non- terminating and non-repeating that cannot be written as the ratio of two integers. Leg of a Triangle Either of the two shorter sides of a right triangle. These two sides together form the right angle in the right triangle. Literal Equation An equation with more than one variable. Formulas are literal equations. Perfect Squares The product of a rational number multiplied by itself. Perfect Cubes In arithmetic and algebra, the cube of a number n is its third power. It is the result of the number multiplying by itself three times. Pythagorean Theorem A theorem that states that in a right triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths of the legs. Pythagorean Triples A set of positive integers, a, b, and c that fit the rule a2 + b2 = c2. Sphere The set of all points in space that are equidistant from a fixed point, called the center. Square Root The square root of a number is a special value that, when multiplied by itself, gives the number. Radius The distance from the center of a circle to any point on the circle. Also, the line segment that has the center of the circle as one endpoint and a point on the circle as the other endpoint. Radical A symbol that is used to indicate square roots. Rational Number A number expressible in the form a/b or – a/b for some fraction a/b. The rational numbers include the integers. Right Triangle A triangle with exactly one right angle. Volume Volume =27 cubic units The amount of space occupied by an object. .
Recommended publications
  • THE GEOMETRY of PYRAMIDS One of the More Interesting Solid
    THE GEOMETRY OF PYRAMIDS One of the more interesting solid structures which has fascinated individuals for thousands of years going all the way back to the ancient Egyptians is the pyramid. It is a structure in which one takes a closed curve in the x-y plane and connects straight lines between every point on this curve and a fixed point P above the centroid of the curve. Classical pyramids such as the structures at Giza have square bases and lateral sides close in form to equilateral triangles. When the closed curve becomes a circle one obtains a cone and this cone becomes a cylindrical rod when point P is moved to infinity. It is our purpose here to discuss the properties of all N sided pyramids including their volume and surface area using only elementary calculus and geometry. Our starting point will be the following sketch- The base represents a regular N sided polygon with side length ‘a’ . The angle between neighboring radial lines r (shown in red) connecting the polygon vertices with its centroid is θ=2π/N. From this it follows, by the law of cosines, that the length r=a/sqrt[2(1- cos(θ))] . The area of the iscosolis triangle of sides r-a-r is- a a 2 a 2 1 cos( ) A r 2 T 2 4 4 (1 cos( ) From this we have that the area of the N sided polygon and hence the pyramid base will be- 2 2 1 cos( ) Na A N base 2 4 1 cos( ) N 2 It readily follows from this result that a square base N=4 has area Abase=a and a hexagon 2 base N=6 yields Abase= 3sqrt(3)a /2.
    [Show full text]
  • Lateral and Surface Area of Right Prisms 1 Jorge Is Trying to Wrap a Present That Is in a Box Shaped As a Right Prism
    CHAPTER 11 You will need Lateral and Surface • a ruler A • a calculator Area of Right Prisms c GOAL Calculate lateral area and surface area of right prisms. Learn about the Math A prism is a polyhedron (solid whose faces are polygons) whose bases are congruent and parallel. When trying to identify a right prism, ask yourself if this solid could have right prism been created by placing many congruent sheets of paper on prism that has bases aligned one above the top of each other. If so, this is a right prism. Some examples other and has lateral of right prisms are shown below. faces that are rectangles Triangular prism Rectangular prism The surface area of a right prism can be calculated using the following formula: SA 5 2B 1 hP, where B is the area of the base, h is the height of the prism, and P is the perimeter of the base. The lateral area of a figure is the area of the non-base faces lateral area only. When a prism has its bases facing up and down, the area of the non-base faces of a figure lateral area is the area of the vertical faces. (For a rectangular prism, any pair of opposite faces can be bases.) The lateral area of a right prism can be calculated by multiplying the perimeter of the base by the height of the prism. This is summarized by the formula: LA 5 hP. Copyright © 2009 by Nelson Education Ltd. Reproduction permitted for classrooms 11A Lateral and Surface Area of Right Prisms 1 Jorge is trying to wrap a present that is in a box shaped as a right prism.
    [Show full text]
  • Pentagonal Pyramid
    Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base.
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • My Favourite Problem No.1 Solution
    My Favourite Problem No.1 Solution First write on the measurements given. The shape can be split into different sections as shown: d 8 e c b a 10 From Pythagoras’ Theorem we can see that BC2 = AC2 + AB2 100 = 64 + AB2 AB = 6 Area a + b + c = Area of Semi-circle on BC (radius 5) = Area c + d = Area of Semi-circle on AC (radius 4) = Area b + e = Area of Semi-circle on AB (radius 3) = Shaded area = Sum of semi-circles on AC and AB – Semi-circle on BC + Triangle Area d + e = d + c + b + e - (a + b + c ) + a = + - + = = 24 (i.e. shaded area is equal to the area of the triangle) The final solution required is one third of this area = 8 Surprisingly you do not need to calculate the areas of the semi-circles as we can extend the use of Pythagoras’ Theorem for other shapes on the three sides of a right-angled triangle. Triangle ABC is a right-angled triangle, so the sum of the areas of the two smaller semi-circles is equal to the area of the larger semi-circle on the hypotenuse BC. Consider a right- angled triangle of sides a, b and c. Then from Pythagoras’ Theorem we have that the square on the hypotenuse is equal to c a the sum of the squares on the other two sides. b Now if you multiply both sides by , this gives c which rearranges to . a b This can be interpreted as the area of the semi-circle on the hypotenuse is equal to the sum of the areas of the semi-circles on the other two sides.
    [Show full text]
  • Module-03 / Lecture-01 SOLIDS Introduction- This Chapter Deals with the Orthographic Projections of Three – Dimensional Objects Called Solids
    1 Module-03 / Lecture-01 SOLIDS Introduction- This chapter deals with the orthographic projections of three – dimensional objects called solids. However, only those solids are considered the shape of which can be defined geometrically and are regular in nature. To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups- Polyhedron- A polyhedron is defined as a solid bounded by planes called faces, which meet in straight lines called edges. Regular Polyhedron- It is polyhedron, having all the faces equal and regular. Tetrahedron- It is a solid, having four equal equilateral triangular faces. Cube- It is a solid, having six equal square faces. Octahedron- It is a solid, having eight equal equilateral triangular faces. Dodecahedron- It is a solid, having twelve equal pentagonal faces. Icosahedrons- It is a solid, having twenty equal equilateral triangular faces. Prism- This is a polyhedron, having two equal and similar regular polygons called its ends or bases, parallel to each other and joined by other faces which are rectangles. The imaginary line joining the centre of the bases is called the axis. A right and regular prism has its axis perpendicular to the base. All the faces are equal rectangles. 1 2 Pyramid- This is a polyhedron, having a regular polygon as a base and a number of triangular faces meeting at a point called the vertex or apex. The imaginary line joining the apex with the centre of the base is known as the axis. A right and regular pyramid has its axis perpendicular to the base which is a regular plane.
    [Show full text]
  • Right Triangles and the Pythagorean Theorem Related?
    Activity Assess 9-6 EXPLORE & REASON Right Triangles and Consider △​ ABC​ with altitude ​​CD‾ ​​ as shown. the Pythagorean B Theorem D PearsonRealize.com A 45 C 5√2 I CAN… prove the Pythagorean Theorem using A. What is the area of △​ ​ABC? ​Of △​ACD? Explain your answers. similarity and establish the relationships in special right B. Find the lengths of ​​AD‾ ​​ and ​​AB‾ ​​. triangles. C. Look for Relationships Divide the length of the hypotenuse of △​ ABC​ VOCABULARY by the length of one of its sides. Divide the length of the hypotenuse of ​ △ACD​ by the length of one of its sides. Make a conjecture that explains • Pythagorean triple the results. ESSENTIAL QUESTION How are similarity in right triangles and the Pythagorean Theorem related? Remember that the Pythagorean Theorem and its converse describe how the side lengths of right triangles are related. THEOREM 9-8 Pythagorean Theorem If a triangle is a right triangle, If... ​△ABC​ is a right triangle. then the sum of the squares of the B lengths of the legs is equal to the square of the length of the hypotenuse. c a A C b 2 2 2 PROOF: SEE EXAMPLE 1. Then... ​​a​​ ​ + ​b​​ ​ = ​c​​ ​ THEOREM 9-9 Converse of the Pythagorean Theorem 2 2 2 If the sum of the squares of the If... ​​a​​ ​ + ​b​​ ​ = ​c​​ ​ lengths of two sides of a triangle is B equal to the square of the length of the third side, then the triangle is a right triangle. c a A C b PROOF: SEE EXERCISE 17. Then... ​△ABC​ is a right triangle.
    [Show full text]
  • Special Case of the Three-Dimensional Pythagorean Gear
    Special case of the three-dimensional Pythagorean gear Luis Teia University of Lund, Sweden luisteia@sapo .pt Introduction n mathematics, three integer numbers or triples have been shown to Igovern a specific geometrical balance between triangles and squares. The first to study triples were probably the Babylonians, followed by Pythagoras some 1500 years later (Friberg, 1981). This geometrical balance relates parent triples to child triples via the central square method (Teia, 2015). The great family of triples forms a tree—the Pythagorean tree—that grows its branches from a fundamental seed (3, 4, 5) making use of one single very specific motion. The diversity of its branches rises from different starting points (i.e., triples) along the tree (Teia, 2016). All this organic geometric growth sprouts from the dynamics of the Pythagorean geometric gear (Figure 1). This gear interrelates geometrically two fundamental alterations in the Pythagorean theorem back to its origins—the fundamental process of summation x + y = z (Teia, 2018). But reality has a three dimensional nature to it, and hence the next important question to ask is: what does the Pythagorean gear look like in three dimensions? Figure 1. Overall geometric pattern or ‘geometric gear’ connecting the three equations (Teia, 2018). Australian Senior Mathematics Journal vol. 32 no. 2 36 Special case of the three-dimensional Pythagorean gear A good starting point for studying any theory in any dimension is the examination of the exceptional cases. This approach was used in eminent discoveries such as Einstein’s theory of special relativity where speed was considered constant (the exceptional case) that then evolved to the theory of general relativity where acceleration was accounted for (the general case) (Einstein, 1961).
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Pythagorean Theorem Word Problems Ws #1 Name ______
    Pythagorean Theorem word problems ws #1 Name __________________________ Solve each of the following. Please draw a picture and use the Pythagorean Theorem to solve. Be sure to label all answers and leave answers in exact simplified form. 1. The bottom of a ladder must be placed 3 feet from a wall. The ladder is 12 feet long. How far above the ground does the ladder touch the wall? 2. A soccer field is a rectangle 90 meters wide and 120 meters long. The coach asks players to run from one corner to the corner diagonally across the field. How far do the players run? 3. How far from the base of the house do you need to place a 15’ ladder so that it exactly reaches the top of a 12’ wall? 4. What is the length of the diagonal of a 10 cm by 15 cm rectangle? 5. The diagonal of a rectangle is 25 in. The width is 15 in. What is the area of the rectangle? 6. Two sides of a right triangle are 8” and 12”. A. Find the the area of the triangle if 8 and 12 are legs. B. Find the area of the triangle if 8 and 12 are a leg and hypotenuse. 7. The area of a square is 81 cm2. Find the perimeter of the square. 8. An isosceles triangle has congruent sides of 20 cm. The base is 10 cm. What is the area of the triangle? 9. A baseball diamond is a square that is 90’ on each side.
    [Show full text]
  • 5-7 the Pythagorean Theorem 5-7 the Pythagorean Theorem
    55-7-7 TheThe Pythagorean Pythagorean Theorem Theorem Warm Up Lesson Presentation Lesson Quiz HoltHolt McDougal Geometry Geometry 5-7 The Pythagorean Theorem Warm Up Classify each triangle by its angle measures. 1. 2. acute right 3. Simplify 12 4. If a = 6, b = 7, and c = 12, find a2 + b2 2 and find c . Which value is greater? 2 85; 144; c Holt McDougal Geometry 5-7 The Pythagorean Theorem Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles. Holt McDougal Geometry 5-7 The Pythagorean Theorem Vocabulary Pythagorean triple Holt McDougal Geometry 5-7 The Pythagorean Theorem The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. a2 + b2 = c2 Holt McDougal Geometry 5-7 The Pythagorean Theorem Example 1A: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem 22 + 62 = x2 Substitute 2 for a, 6 for b, and x for c. 40 = x2 Simplify. Find the positive square root. Simplify the radical. Holt McDougal Geometry 5-7 The Pythagorean Theorem Example 1B: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem (x – 2)2 + 42 = x2 Substitute x – 2 for a, 4 for b, and x for c. x2 – 4x + 4 + 16 = x2 Multiply.
    [Show full text]
  • The Pythagorean Theorem and Area: Postulates Into Theorems Paul A
    Humanistic Mathematics Network Journal Issue 25 Article 13 8-1-2001 The Pythagorean Theorem and Area: Postulates into Theorems Paul A. Kennedy Texas State University Kenneth Evans Texas State University Follow this and additional works at: http://scholarship.claremont.edu/hmnj Part of the Mathematics Commons, Science and Mathematics Education Commons, and the Secondary Education and Teaching Commons Recommended Citation Kennedy, Paul A. and Evans, Kenneth (2001) "The Pythagorean Theorem and Area: Postulates into Theorems," Humanistic Mathematics Network Journal: Iss. 25, Article 13. Available at: http://scholarship.claremont.edu/hmnj/vol1/iss25/13 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Humanistic Mathematics Network Journal by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. The Pythagorean Theorem and Area: Postulates into Theorems Paul A. Kennedy Contributing Author: Department of Mathematics Kenneth Evans Southwest Texas State University Department of Mathematics, Retired San Marcos, TX 78666-4616 Southwest Texas State University [email protected] San Marcos, TX 78666-4616 Considerable time is spent in high school geometry equal to the area of the square on the hypotenuse. building an axiomatic system that allows students to understand and prove interesting theorems. In tradi- tional geometry classrooms, the theorems were treated in isolation with some of
    [Show full text]