Pest Management (Janet Knodel and Larry Charlet)

Total Page:16

File Type:pdf, Size:1020Kb

Pest Management (Janet Knodel and Larry Charlet) Pest Management (Janet Knodel and Larry Charlet) Integrated Pest Management Economic Injury Level Sunfl ower can be a high-risk crop because of potential and Economic Threshold Levels losses from diseases, insects, birds and weeds. These One major component of a pest management program potential risks require that growers follow integrated is determining when tactics should be implemented pest management (IPM) practices. IPM is a sus- to prevent economic loss. Economic loss results when tainable approach to managing pests by combining pest numbers increase to a point where they cause biological, cultural, physical and chemical tools in a crop losses that are greater than or equal to the cost of way that minimizes economic, health and environ- controlling the pest. An economic injury level (EIL) is mental risks to maintain pest populations below levels defi ned as the level of pests that will cause economic that cause unacceptable losses to crop quality or yield. damage. An EIL recognizes that treatment is justifi ed The concept of pest management is based on the fact for some pest population levels while others are not of that many factors interact to infl uence the abundance economic importance. of a pest. Control methods vary in effectiveness, but integration of these various population-regulating An economic threshold level (ETL) is the level or factors can minimize the number of pests in sunfl ower number of pests at which tactics must be applied to and reduce the cost of managing pest populations prevent an increasing pest population from causing without unnecessary crop losses. IPM also recom- economic losses. Usually the ETL is lower than the mends the judicious use of chemical pesticides when EIL. The ETL has been defi ned most extensively for needed and suggests ways to maximize effectiveness insect pests; fewer ETLs have been established for and minimize impact on nontarget organisms and the other types of pests. The ETL varies signifi cantly environment. among different pests and also can vary during differ- ent developmental stages of the crop. Crop price, yield potential, crop density, cost of control and environ- mental conditions infl uence the ETL and EIL. Gener- ally, the ETL increases as cost of control increases and decreases as the crop value increases. Monitoring Pest Population Levels In general, fi elds should be evaluated regularly to de- termine pest population levels. A weekly fi eld check is usually suffi cient, but fi eld checks should be increased to two or three times a week if the number of pests is increasing rapidly or if the number is approaching an economic threshold level. Pests should be identifi ed accurately because economic threshold levels and con- 26 trol measures vary for different organisms. In addition, Summary when insects pests are monitored, many insects are Growers should examine their operations and benefi cial and may help reduce numbers of injurious minimize pest damage by adopting integrated pest insects; recognizing which are pests and those that are management practices based on the use of eco- benefi cial is important. nomic threshold levels, when available, plus carefully Management Pest monitoring and combining various control methods. Tools of Pest Management Signifi cant progress with sunfl ower pest management Tools of pest management include many tactics, of has been made and undoubtedly will continue to be which pesticides are only one. These tactics can be made in the future to aid successful sunfl ower produc- combined to create conditions that are the least condu- tion. The following sections provide current informa- cive for pest survival. Chemical or biological pesti- tion on management of insects, diseases, weeds, birds cides are used when pests exceed economic threshold and other sunfl ower pests. A growing season calendar levels; sometimes they are necessary when control is shows the major sunfl ower pest problems and time of needed quickly to prevent economic losses. occurrence in the northern Great Plains production area (Figure 16). Some of the tools or components of pest management that can be used to reduce pest populations are: Biological Controls Benefi cial insects Benefi cial pathogens Host Resistance Cultural Controls Planting and harvest dates Crop rotation Tillage practices Mechanical/Physical Controls Temperature Weather events Trapping Chemical Controls Pesticides Attractants Repellents Pheromones ■ Figure 16. A growing season calendar indicating time of occurrence of major sunfl ower pests. (J. Knodel) 27 Quick Reference Guide to Major Sunfl ower Insects The information presented on this page is designed to be a quick reference for growers, crop consultants, fi eld scouts and others. Since this information is very brief, the user should refer to the following pages for more detailed data on life cycles, damage, descriptions, etc. Insects Description Occurrence, Injury and Economic Threshold (ET) Cutworms Dirty gray to gray brown. ET – 1 per square foot or 25 percent to 30 percent stand (several species) Grublike larva, 0.25 to 1.5 inches in length. reduction. Appear in early spring when plants are in the seedling stage, chewing them at or slightly above ground. Palestriped Adult: 1/8 inch long and shiny black, with two white ET – 20 percent of the seedling stand is injured and at risk Flea Beetle stripes on the back. The hind legs are enlarged and to loss due to palestriped fl ea beetle feeding. Scout for modifi ed for jumping. fl ea beetles by visually estimating population on seedlings or using yellow sticky cards placed close to the ground. Sunfl ower Beetle Adult: reddish-brown head, cream back with three ET – 1 to 2/seedling (adults), or 10 to 15/seedling dark stripes on each wing cover. Body 0.25 to 0.5 (larvae). Adults appear in early June, larvae shortly inch long. Larva: yellowish green, humpbacked in thereafter. Both adults and larvae chew large holes appearance, 0.35 inch in length. in leaves. Sunfl ower Adult: wingspread 0.63 to 0.75 inch, gray brown ET – none. First generation adults appear in late May to Bud Moth with two dark transverse bands on forewings. mid-June. Second generation adults appear in midsummer. Larva: Cream-colored body (0.33 to 0.4 inch) with Larvae from fi rst generation damage terminals and stalks, a brown head. whereas second generation larvae feed in receptacle area. Longhorned Adult: pale gray and 5/8 inch (6 to 11 mm) in No scouting method or ET has been developed. Adults are Beetle (Dectes) length, with long gray and black banded antennae. present from late June through August. Larvae tunnel and Larvae: yellowish with fl eshy protuberances on the feed in the petioles and stem pith and girdle the base of fi rst seven abdominal segments (1/3 to 1/2 inch) plants. Stalks often break at the point of larval girdling. Sunfl ower Stem Adult: small (0.19 inch long) weevil with a ET – 1 adult/3 plants in late June to early July. Adults Weevil gray-brown background and white dots on the back. appear in mid to late June, with larvae in stalks from early July to late summer. Thistle Caterpillar Adult: wingspread of 2 inches, upper wing surface brown ET – 25 percent defoliation, provided that most of the (Painted Lady with red and orange mottling and white and black spots. larvae still are less than 1.25 inches in length. Adults Butterfl y) Larva: brown to black, spiny, with a pale yellow stripe appear in early to mid-June, with larvae appearing on each side, 1.25 to 1.5 inches in length. shortly thereafter. Larvae chew holes in leaves. Sunfl ower Midge Adult: small (0.07 inch), tan, gnatlike insect. ET – none. Adult emergence begins in early July. Larvae Larva: cream or yellowish, 0.09 inch long, tapered at feed around head margin and at the base of the seeds, front and rear. causing shrinkage and distortion of heads. Sunfl ower Seed Adults: the red sunfl ower seed weevil is about 0.12 ET – generally 8 to 14 adult red sunfl ower weevils per head Weevils inch long and rusty in color. The gray sunfl ower seed (oil) and one per head (confectionery). Adults appear in weevil is about 0.14 inch long and gray in color. late June to early July. Treat for red sunfl ower seed weevil Larvae: both species are cream-colored, legless and at R5.1 to R5.4. Larvae feed in seeds from mid to late C-shaped. summer. Sunfl ower Moth Adult: body is 0.38 inch long, with 0.75 inch ET – 1 to 2 adults/5 plants at onset of bloom. Adults are wingspread. Color is buff to gray. Larva: brown head migratory and usually appear in early to mid-July. Larvae capsule with alternate dark and light lines running tunnel in seeds from late July to late August. longitudinally, 0.75 inch in length. Banded Sunfl ower Adult: small 0.25-inch straw-colored moth with brown ET – See banded sunfl ower moth section for egg or adult Moth triangular area on forewing. Larva: in early growth sampling methods for determining ET. Sampling should be stage, off-white, changing to red and then green color conducted in the late bud stage (R-3), usually during mid- at maturity, 0.44 inch in length. July. Adults appear about mid-July to mid-August. Larvae present in heads from mid-July to mid-September. Lygus Bug Adult: small (0.2 inch in length), cryptically colored ET - for CONFECTION SUNFLOWERS ONLY – insects with a distinctive yellow triangle or “V” on 1 Lygus bug per 9 heads. Two insecticide sprays are the wings and vary in color from pale green to dark recommended: one application at the onset of pollen shed brown.
Recommended publications
  • Biology and Integrated Pest Management of the Sunflower Stem
    E-821 (Revised) Biology and Integrated Pest Management of the SunflowerSunflower StemStem WeevilsWeevils inin thethe GreatGreat PlainsPlains Janet J. Knodel, Crop Protection Specialist Laurence D. Charlet, USDA, ARS Research Entomologist he sunflower stem weevil, Cylindrocopturus adspersus T(LeConte), is an insect pest that has caused economic damage to sunflower in the northern and southern Great Plains of the USA and into Canada. It belongs in the order Coleoptera (beetles) and family Curculionidae (weevils), and has also been called the spotted sunflower stem weevil. It is native to North America and has adapted to wild and cultivated Figure 1. Damage caused by sunflower stem weevil – sunflower lodging and stalk breakage. sunflowers feeding on the stem and leaves. The sunflower stem weevil was first reported as a pest in 1921 from severely wilted plants in fields grown for silage in Colorado. In North Dakota, the first sunflower stem weevil infestation ■ Distribution was recorded in 1973, causing 80% The sunflower stem weevil has been reported from most states yield loss due to lodging (Figure 1). west of the Mississippi River and into Canada. Economically Populations of sunflower stem weevil damaging populations have been recorded in Colorado, Kansas, have fluctuated over the years with high Nebraska, North Dakota, Minnesota, South Dakota, and Texas. numbers in some areas from the 1980s The black sunflower stem weevil can be found in most sunflower production areas with the greatest concentrations in to early 1990s in North Dakota. southern North Dakota and South Dakota. Another stem feeding weevil called the black sunflower stem weevil, Apion occidentale Fall, also occurs throughout the Great Plains, and attacks sunflower as a host.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • An Annotated Bibliography of the Dingy Cutworm Complex
    RESEARCH CIRCULAR 202 SEPTEMBER 197 5 An Annotated Bibliography of the Dingy Cutworm Complex Feltia ducens Walker and Feltia subgothica Haworth FRED J. ARNOLD OHIO AGRICULTURAL RESE CONTENTS * * * * Introduction ................................................................... 1 Bibliography ................................................................... 4 Index . 22 Dingy Cutworm Larva Dingy Cutworm Adult AN ANNOTATED BIBLIOGRAPHY OF THE DINGY CUTWORM COMPLEX, Feltia ducens Walker and Feltia subgothica (Haworth) Roy W. Rings 1 , Beth A. Baughman 2 , and Fred J. Arnold 2 Introduction The purpose of this circular is to consolidate the abstracted literature on the dingy cutworm complex, Feltia ducens Walker and Feltia subgothica (Haworth). The term "dingy cutworm complex" is used since there is much con­ fusion and disagreement between both earlier and contemporary taxonomists as to the correct usage of the scientific name of the economically important dingy cutworm. Contemporary taxonomists agree that Feltia ducens and Feltia subgothica have been considered distinct species for more than 70 years. In the past there has been debate as to whether the latter species should be called sub­ gothica or jaculifera. In this publication, the authors are following the nomenclatural policy of the United States National Museum which is based upon Forbes' interpretation of the complex. The photographs on the contents page illustrate the species which the authors consider the dingy cutworm, Feltia ducens Walker. Forbes (1954) believed that Haworth (1810) probably had ducens and subgothica mixed up. He implied that it is not certain which species Haworth described as subgothica and therefore Forbes called it jaculifera. Several other authors (Hampson 1903; McDunnough 1938; Smith 1893) believed that Haworth had only a single specimen.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Canadian Food Inspection Agency Home > Plants > Plants with Novel Traits > Applicants > Directive 94­08 > Biology Documents > Helianthus Annuus L
    Canadian Food Inspection Agency Home > Plants > Plants With Novel Traits > Applicants > Directive 94­08 > Biology Documents > Helianthus annuus L. The Biology of Share this page Helianthus annuus L. This page is part of the Guidance Document Repository (GDR). Looking for related documents? Search for related documents in the Guidance Document Repository Biology Document BIO2005­01: A companion document to the Directive 94­08 (Dir94­08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits Table of Contents Part A General Information A1. Background A2. Scope Part B The Biology of H. annuus L. B1. General Description, Cultivation and Use as a Crop Plant B2. The Centres of Origin of the Species B3. The Reproductive Biology of H. annuus B4. Breeding, Seed Production and Agronomic Practices for Sunflower B5. Cultivated H. annuus as a Volunteer Weed Part C Related species of H. annuus L. C1. Inter­species/Genus Hybridization C2. Potential for Introgression of Genetic Information from Cultivated H. annuus into Relatives C3. Summary of Ecology of Relatives of H. annuus Part D Potential Interactions of H. annuus L. Table 1. Examples of Potential Interactions of H. annuus L. with Other Life Form During its Life Cycle. Part E Acknowledgements Part F Bibliography Part A ­ General Information A1. Background The Canadian Food Inspection Agency's (CFIA) Plant Biosafety Office (PBO) is responsible for regulating the intentional introduction of plants with novel traits (PNTs) into the Canadian environment. PNTs are plants containing traits not present in plants of the same species already existing as stable, cultivated populations in Canada, or are expressed outside the normal statistical range of similar existing traits in the plant species.
    [Show full text]
  • Sunflower Maggot: Strauzia Longipennis
    Plant Pest Factsheet Sunflower maggot Strauzia longipennis Figure 1. Adult Strauzia longipennis, Washington, USA. © Katja Schulz. Background Strauzia longipennis (Wiedemann) (Diptera: Tephritidae), commonly known as the sunflower maggot, is native to North America, and is a pest of Helianthus annuus (sunflower). In 2010, two females of the species were recorded on a young sunflower in Treptow-köpenick, a borough of Berlin, Germany. This was the first record of the species in Europe and was followed by three more records of the fly in Wartenberg, Lankwitz and Tempelhof, also boroughs of Berlin, in the same year. In view of these findings and the importance of sunflower cultivation in Europe, Strauzia longipennis was added to the EPPO Alert List in 2011. The fly was subsequently recorded in urban areas of Berlin and in fields of Land Brandenburg in 2011 and 2012, confirming its establishment in Germany. Given its native climate and the range of its host, there is potential for this fly to spread throughout Europe and into the UK. Geographical Distribution Strauzia longipennis is widespread in its native range of the USA and Canada. It is now also present in Germany, probably from as early as 2008. Host Plants The fly’s primary host is H. annuus (sunflower). It has also been observed on other Helianthus species, such as H. maximilianii (maximilian sunflower) and H. tuberosus (Jerusalem artichoke), and on species of the Asteraceae family, including Ageratina altissima (white snakeroot), Ambrosia trifida (Giant ragweed), and Smallanthus uvedalia. Description The eggs are around 1 mm in length and are white, with an elongated shape.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • Mound Spring Prairie SNA Bioblitz Results
    Mound Spring Prairie SNA Bioblitz Species found August 11, 2018 (preliminary data) Bacteria: • Downy Woodpecker (Picoides pubescens) • Apical chlorosis of Canada thistle aka PST – • Northern Flicker (Colaptes auratus) (Pseudomonas syringae pv. tagetis) • Great Crested Flycatcher (Myiarchus crinitus) • Western Kingbird (Tyrannus verticalis) Reptiles and Amphibians: • Eastern Kingbird (Tyrannus tyrannus) • Eastern Wood-Pewee (Contopus virens) • Northern leopard frog (Rana pipiens) • Willow Flycatcher (Empidonax traillii) • Northern prairie skink (Plestiodon • septentrionalis) Blue Jay (Cyanocitta cristata) • Purple Martin (Progne subis) • Tree Swallow (Tachycineta bicolor) Fungi and Lichens: • Cliff Swallow (Petrochelidon pyrrhonota) • Fairy ring mushroom (Marasmius oreades) • Barn Swallow (Hirundo rustica) • Common Split gill (Schizophyllum commune) • Black-capped Chickadee (Poecile atricapillus) • Ash polypore (Perenniporia fraxinophila) • White-breasted Nuthatch (Sitta carolinensis) • Xanthoria fallax • House Wren (Troglodytes aedon) • Physcia stellaris • Sedge Wren (Cistothorus platensis) • Hyperphyscia cf. adglutinata • American Robin (Turdus migratorius) • Gray Catbird (Dumetella carolinensis) Mammals: • European Starling (Sturnus vulgaris) • Plains pocket gopher (Geomys bursarius) • Cedar Waxwing (Bombycilla cedrorum) • Thirteen-lined ground squirrel (Ictidomys • House Finch (Haemorhous mexicanus) tridecemlineatus) • American Goldfinch (Spinus tristis) • Whitetail deer (Odocoileus virginianus) • Chipping Sparrow (Spizella passerina)
    [Show full text]
  • Evaluation of Host Plant Resistance Against Sunflower Moth, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn M. Sikora University of Nebraska - Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Sikora, Dawn M., "Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska" (2017). Dissertations and Student Research in Entomology. 50. http://digitalcommons.unl.edu/entomologydiss/50 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska by Dawn Sikora A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeff Bradshaw and Gary Brewer Lincoln, Nebraska August, 2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn Sikora, M.S. University of Nebraska, 2017 Advisors: Jeff Bradshaw and Gary Brewer Sunflower moth, Homoeosoma electellum, is a serious pest of oilseed and confection sunflowers. In this study, we determine efficacy of resistance against this pest. Thirty commercial hybrids, inbreds, and varieties of sunflowers were tested in replicated field and laboratory studies.
    [Show full text]
  • Monitoring Arthropods Fauna Associated with Sunflower (Helianthus Annuus L.) Varieties Used in Cut Flower Trade Industry in South Florida, USA
    International Journal of Botany Studies International Journal of Botany Studies ISSN: 2455-541X; Impact Factor: RJIF 5.12 Received: 25-03-2019; Accepted: 30-04-2019 www.botanyjournals.com Volume 4; Issue 3; May 2019; Page No. 191-195 Monitoring arthropods fauna associated with sunflower (Helianthus annuus L.) Varieties used in cut flower trade industry in South Florida, USA Fazal Said1, Catharine Mannion2, Hussain Ali3, Fazal Jalal4, Muhammad Imtiaz5, Muhammad Ali Khan6, Sayed Hussain7 1, 4-7 Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan 2 University of Florida/IFAS Tropical research & education center, Homestead, USA 3 Entomology Section, Agriculture Research Institute (ARI), D.I. Khan Peshawar, Pakistan Abstract Sunflower (Helianthus annuus L.) is a profitable cash crop in the southern and eastern states of United States of America mainly for the production of edible oils, biodiesel as well as cut flower for ornamental purposes. Field experiment was conducted during spring season 2014 at Tropical Research and Education Centre (TREC) of The University of Florida at Homestead to monitor different arthropods fauna on four different sunflower cultivars i.e. Sunrich Lemon, Sunbright, Sunrich Orange and Russian Mammoth. Basic purpose of the study was to document different arthropods fauna associated with the crop. Among all four varieties of sunflower, three were cut flowers whereas Russian Mammoth was oilseed variety. While monitoring, no attempt was made to collect all the available individuals, only the representative species of each individual was collected since the basic purpose of the study was to report all the existing arthropod species on sunflower in the area.
    [Show full text]
  • Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups
    Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups Final Report Prepared by: Christopher S. Hobson For: The Cave Conservancy of the Virginias Date: 15 April 2010 This report may be cited as follows: Hobson, C.S. 2010. Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups. Natural Heritage Technical Report 10-12. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. Unpublished report submitted to The Cave Conservancy of the Virginias. April 2010. 30 pages plus appendices. COMMONWEALTH of VIRGINIA Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups Virginia Department of Conservation and Recreation Division of Natural Heritage Natural Heritage Technical Report 10-12 April 2010 Contents List of Tables......................................................................................................................... ii List of Figures........................................................................................................................ iii Introduction............................................................................................................................ 1 Geology.................................................................................................................................. 2 Explanation of the Natural Heritage Ranking System..........................................................
    [Show full text]