Time-Controlled Adaptive Ventilation (TCAV)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Calcium on Intestinal Mucin: Implications for Cystic Fibrosis
27. Takcbayi~shi.S.. (;robe. II . von B;~ssca~t/.D. H.. and rliormnn. 11. Ultrastruc- prepnratlon.) tural a\pects of veihel .llteratlon\ In homoc!\t~nur~a.V~rcha\r'r Arch. Aht. .A 33 Wong. P. W. K.. Scliworl. V . and Komro~er.(i. M.: The b~os!nthc\~\of P;~thol Anat . 1154- 4 (1071). c)st:~thlonrnc In pntlcntc s~thhornoc!\tinur~,~. Ped~at.Rer . 2- 149 (196x1. 28. T:~ndler. H. T.. I:rlandson. R. A,, and Wbnder. E. 1.. Rihol1;lvln and mou\c 34 'The authors would l~kcto thank K. Curleq, N. Becker, and k.Jaros~u\ for thcir hepatic cell structure and funct~on.hmer. J. Pnthol.. 52 69 (1968). techn~cal:Is\l\tancc and Dr\. B. Chomet. Orville T B:llle!. and Mar) B. 29. Ti~nikawa, L.: llltrastructurnl A\pect\ of the I iver and Its I)~sordcr\(Igaker Buschman for the~ruggehtlona In the ~ntcrpretation\of braln and Iner electron Shoin. I.td.. Tok!o. 1968). micrograph\. 30. Uhlendorl, B. W.. Concrl!. E. R.. and Mudd. S. H.: tlomoc!st~nur~a:Studle, In 35 Th~sstud! &a\ \upported b! Publrc Health Servlcc Kese;~rch Grant no. KO1 tissue culture. Pediat. Kes.. 7: 645 (1073). N5OX532NlN and a grant from the Illino~\Department of Mental llealth. 31. Wong. P. W. K.. and Fresco. R.: T~\suec!\tathlon~nc in mice trei~tedw~th 36 Requests for reprint\ should be i~ddressed to: Paul W. K. Wong. M.D.. cystelne and homoser~ne.Pedlat. Res . 6 172 (1972) Department of Ped~atric.Prcsh!tcr~an-St. -
Respiratory Support
Intensive Care Nursery House Staff Manual Respiratory Support ABBREVIATIONS FIO2 Fractional concentration of O2 in inspired gas PaO2 Partial pressure of arterial oxygen PAO2 Partial pressure of alveolar oxygen PaCO2 Partial pressure of arterial carbon dioxide PACO2 Partial pressure of alveolar carbon dioxide tcPCO2 Transcutaneous PCO2 PBAR Barometric pressure PH2O Partial pressure of water RQ Respiratory quotient (CO2 production/oxygen consumption) SaO2 Arterial blood hemoglobin oxygen saturation SpO2 Arterial oxygen saturation measured by pulse oximetry PIP Peak inspiratory pressure PEEP Positive end-expiratory pressure CPAP Continuous positive airway pressure PAW Mean airway pressure FRC Functional residual capacity Ti Inspiratory time Te Expiratory time IMV Intermittent mandatory ventilation SIMV Synchronized intermittent mandatory ventilation HFV High frequency ventilation OXYGEN (Oxygen is a drug!): A. Most infants require only enough O2 to maintain SpO2 between 87% to 92%, usually achieved with PaO2 of 40 to 60 mmHg, if pH is normal. Patients with pulmonary hypertension may require a much higher PaO2. B. With tracheal suctioning, it may be necessary to raise the inspired O2 temporarily. This should not be ordered routinely but only when the infant needs it. These orders are good for only 24h. OXYGEN DELIVERY and MEASUREMENT: A. Oxygen blenders allow O2 concentration to be adjusted between 21% and 100%. B. Head Hoods permit non-intubated infants to breathe high concentrations of humidified oxygen. Without a silencer they can be very noisy. C. Nasal Cannulae allow non-intubated infants to breathe high O2 concentrations and to be less encumbered than with a head hood. O2 flows of 0.25-0.5 L/min are usually sufficient to meet oxygen needs. -
In Vitro Modelling of the Mucosa of the Oesophagus and Upper Digestive Tract
21 Review Article Page 1 of 21 In vitro modelling of the mucosa of the oesophagus and upper digestive tract Kyle Stanforth1, Peter Chater1, Iain Brownlee2, Matthew Wilcox1, Chris Ward1, Jeffrey Pearson1 1NUBI, Newcastle University, Newcastle upon Tyne, UK; 2Applied Sciences (Department), Northumbria University, Newcastle upon Tyne, UK Contributions: (I) Conception and design: All Authors; (II) Administrative support: All Authors; (III) Provision of study materials or patients: All Authors; (IV) Collection and assembly of data: All Authors; (V) Data analysis and interpretation: All Authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Kyle Stanforth. NUBI, Medical School, Framlington Place, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK. Email: [email protected]. Abstract: This review discusses the utility and limitations of model gut systems in accurately modelling the mucosa of the digestive tract from both an anatomical and functional perspective, with a particular focus on the oesophagus and the upper digestive tract, and what this means for effective in vitro modelling of oesophageal pathology. Disorders of the oesophagus include heartburn, dysphagia, eosinophilic oesophagitis, achalasia, oesophageal spasm and gastroesophageal reflux disease. 3D in vitro models of the oesophagus, such as organotypic 3D culture and spheroid culture, have been shown to be effective tools for investigating oesophageal pathology. However, these models are not integrated with modelling of the upper digestive tract—presenting an opportunity for future development. Reflux of upper gastrointestinal contents is a major contributor to oesophageal pathologies like gastroesophageal reflux disease and Barratt’s oesophagus, and in vitro models are essential for understanding their mechanisms and developing solutions. -
1. Ventilator Management
1. Ventilator Management Indications for Mechanical Ventilation Apnea Ventilatory insufficiency Increase in PaCo2 and decrease in ph Refractory hypoxemia Complications Associated with Mechanical Ventilation Hypotension Increased intrathoracic pressure decreases venous return to the heart Increased risk of ventilator associated pneumonia (VAP) Keep HOB at > 30 Maintain frequent, good oral care Problems with endotracheal tube Mucous plugging Tube my become dislodged Kinking or biting of tube Cuff rupture Pneumothorax Initial Ventilator Settings—parameters to be clarified Type of ventilation Mode of ventilation Tidal volume or peak inspiratory setting Respiratory rate FiO2 PEEP (Positive End Expiratory Pressure) Types of Ventilation Volume Cycled Ventilation(VCV) A pre-selected tidal volume is delivered at the pressure required. Tidal volume guaranteed. Peak inspiratory pressure will vary depending on airway resistance and lung compliance. Pressure Control Time-Cycled Ventilation (PCV) Operator selects inspiratory pressure and inspiratory time Breath is terminated when inspiratory time is reached Inspiratory pressure is guaranteed; tidal volume is dependant on airway resistance and lung compliance Pressure Support (PSV) Requires intact respiratory drive Operator selects inspiratory pressure Patient initiates breath, pressure quickly rises to set pressure and is maintained throughout the inspiratory phase Tidal volume determined by lung compliance and inspiratory effort Modes of Ventilation Assist/Control -
Mechanical Ventilation
Fundamentals of MMeecchhaanniiccaall VVeennttiillaattiioonn A short course on the theory and application of mechanical ventilators Robert L. Chatburn, BS, RRT-NPS, FAARC Director Respiratory Care Department University Hospitals of Cleveland Associate Professor Department of Pediatrics Case Western Reserve University Cleveland, Ohio Mandu Press Ltd. Cleveland Heights, Ohio Published by: Mandu Press Ltd. PO Box 18284 Cleveland Heights, OH 44118-0284 All rights reserved. This book, or any parts thereof, may not be used or reproduced by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review. First Edition Copyright 2003 by Robert L. Chatburn Library of Congress Control Number: 2003103281 ISBN, printed edition: 0-9729438-2-X ISBN, PDF edition: 0-9729438-3-8 First printing: 2003 Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the author and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, express or implied, with respect to the contents of the publication. Table of Contents 1. INTRODUCTION TO VENTILATION..............................1 Self Assessment Questions.......................................................... 4 Definitions................................................................................ -