The Mathematics of Algorithm Design

Total Page:16

File Type:pdf, Size:1020Kb

The Mathematics of Algorithm Design The Mathematics of about all these algorithms without recourse to spe- Algorithm Design cific computing devices or computer programming languages, instead expressing them using the lan- Jon Kleinberg guage of mathematics. In fact, the notion of an algorithm as we now think of it was formalized Cornell University, Ithaca NY USA. in large part by the work of mathematical logi- cians in the 1930s, and algorithmic reasoning is 1 The Goals of Algorithm Design implicit in the past several millenia of mathemati- cal activity. (For example, equation-solving meth- When computer science began to emerge as a sub- ods have always tended to have a strong algorith- ject at universities in the 1960s and 1970s, it drew mic flavor; the geometric constructions of the an- some amount of puzzlement from the practitioners cient Greeks were inherently algorithmic as well.) of more established fields. Indeed, it is not initially Today, the mathematical analysis of algorithms clear why computer science should be viewed as a occupies a central position in computer science; distinct academic discipline. The world abounds reasoning about algorithms independently of the with novel technologies, but we don't generally specific devices on which they run can yield in- create a separate field around each one; rather, sight into general design principles and fundamen- we tend to view them as by-products of existing tal constraints on computation. branches of science and engineering. What is spe- At the same time, computer science research cial about computers? struggles to keep two diverging views in focus: Viewed in retrospect, such debates highlighted this more abstract view that formulates algorithms an important issue: computer science is not so mathematically, and the more applied view that much about the computer as a specific piece of the public generally associates with the field, the technology as it is about the more general phe- one that seeks to develop applications such as In- nomenon of computation itself, the design of pro- ternet search engines, electronic banking systems, cesses that represent and manipulate information. medical imaging software, and the host of other Such processes turn out to obey their own inherent creations we have come to expect from computer laws, and they are performed not only by comput- technology. The tension between these two views ers but by people, by organizations, and by sys- means that the field’s mathematical formulations tems that arise in nature. We will refer to these are continually being tested against their imple- computational processes as algorithms. For the mentation in practice; it provides novel avenues purposes of our discussion in this article, one can for mathematical notions to influence widely used think of an algorithm informally as a step-by-step applications; and it sometimes leads to new mathe- sequence of instructions, expressed in a stylized matical problems motivated by these applications. language, for solving a problem. The goal of this short article is to illustrate this This view of algorithms is general enough to cap- balance between the mathematical formalism and ture both the way a computer processes data and the motivating applications of computing. We be- the way a person performs calculations by hand. gin by building up to one of the most basic defi- For example, the rules for adding and multiplying nitional questions in this vein: how should we for- numbers that we learn as children are algorithms; mulate the notion of efficient computation? the rules used by an airline company for schedul- ing flights constitute an algorithm; and the rules used by a search engine like Google for ranking 2 Two Representative Problems Web pages constitute an algorithm. It is also fair to say that the rules used by the human brain to To make the discussion of efficiency more concrete, identify objects in the visual field constitute a kind and to illustrate how one might think about an of algorithm, though we are currently a long way issue like this, we first discuss two representative from understanding what this algorithm looks like problems | both fundamental in the study of algo- or how it is implemented on our neural hardware. rithms | that are similar in their formulation but A common theme here is that one can reason very different in their computational difficulty. 1 2 a) b) 24 12 12 8 8 20 10 14 10 7 22 11 11 Figure 1: Solutions to instance of (a) the Traveling Salesman Problem and (b) the Minimum Spanning Tree Problem, on the same set of points. The dark lines indicate the pairs of cities that are connected by the respective optimal solutions, and the lighter lines indicate all pairs that are not connected. The first in this pair is the Traveling Salesman in a \good" order; it has been used for problems Problem (TSP), and it is defined as follows. We that run from planning the motion of robotic arms imagine a salesman contemplating a map with n drilling holes on printed circuit boards (where the cities (he is currently located in one of them). The \cities" are the locations where the holes must be map gives the distance between each pair of cities, drilled) to ordering genetic markers on a chromo- and the salesman wishes to plan the shortest pos- some in a linear sequence (with the markers con- sible tour that visits all n cities and returns to the stituting the cities, and the distances derived from starting point. In other words, we are seeking an probabilistic estimates of proximity). The MST is algorithm that takes as input the set of all dis- a basic issue in the design of efficient communi- tances among pairs of cities, and produces a tour cation networks; this follows the motivation given of minimum total length. Figure 1(a) depicts the above, with fiber-optic cable acting in the role of optimal solution to a small instance of the TSP; \roads." The MST also plays an important role in the circles represent the cities, the dark line seg- the problem of clustering data into natural group- ments (with lengths labeling them) connect cities ings. Note for example how the points on the left that the salesman visits consecutively on the tour, side of Figure 1(b) are joined to the points on the and the light line segments connect all the other right side by a relatively long link; in clustering ap- pairs of cities, which are not visited consecutively. plications, this can be taken as evidence that the A second problem is the Minimum Spanning left and right points form natural groupings. Tree Problem (MST). Here we imagine a construc- It is not hard to come up with an algorithm for tion firm with access to the same map of n cities, solving the TSP. We first list every possible way but with a different goal in mind. They wish to of ordering the cities (other than the starting city, build a set of roads connecting certain pairs of the which is fixed in advance). Each ordering defines cities on the map, so that after these roads are a tour { the salesman could visit the cities in this built there is a route from each of the n cities to order and then return to the start { and for each each other. (A key point here is that each road ordering we could compute the total length of the must go directly from one city to another.) Their tour, by traversing the cities in this order and sum- goal is to build such a road network as cheaply as ming the distances from each city to the next. As possible | in other words, using as little total road we perform this calculation for all possible orders, material as possible. Figure 1(b) depicts the op- we keep track of the order that yields the smallest timal solution to the instance of the MST defined total distance, and at the end of the process we by the same set of cities used for part (a). return this tour as the optimal solution. Both of these problems have a wide range of While this algorithm does solve the problem, it practical applications. The TSP is a basic problem is extremely inefficient. There are n 1 cities other concerned with sequencing a given set of objects than the starting point, and any possible− sequence 3. COMPUTATIONAL EFFICIENCY 3 of them defines a tour, so we need to consider needs to sort the pairs of cities by their distances, (n 1)(n 2)(n 3) (3)(2)(1) = (n 1)! possi- and then make a single pass through this sorted ble−tours.−Even for− n·=· · 30 cities, this is− an astro- list to decide which roads to build. nomically large quantity; on the fastest computers This discussion has provided us with a fair we have today, running this algorithm to comple- amount of insight into the nature of the TSP tion would take longer than the life expectancy and MST problems. Rather than experimenting of the Earth. The difficulty is that the algorithm with actual computer programs, we described al- we have just described is performing brute-force gorithms in words, and made claims about their search: the \search space" of possible solutions to performance that could be stated and proved as the TSP is very large, and the algorithm is doing mathematical theorems. But what can we abstract nothing more than plowing its way through this from these examples, if we want to talk about com- entire space, considering every possible solution. putational efficiency in general? For most problems, there is a comparably inef- ficient algorithm that simply performs brute-force 3 Computational Efficiency search.
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Geometric Algorithms
    Geometric Algorithms primitive operations convex hull closest pair voronoi diagram References: Algorithms in C (2nd edition), Chapters 24-25 http://www.cs.princeton.edu/introalgsds/71primitives http://www.cs.princeton.edu/introalgsds/72hull 1 Geometric Algorithms Applications. • Data mining. • VLSI design. • Computer vision. • Mathematical models. • Astronomical simulation. • Geographic information systems. airflow around an aircraft wing • Computer graphics (movies, games, virtual reality). • Models of physical world (maps, architecture, medical imaging). Reference: http://www.ics.uci.edu/~eppstein/geom.html History. • Ancient mathematical foundations. • Most geometric algorithms less than 25 years old. 2 primitive operations convex hull closest pair voronoi diagram 3 Geometric Primitives Point: two numbers (x, y). any line not through origin Line: two numbers a and b [ax + by = 1] Line segment: two points. Polygon: sequence of points. Primitive operations. • Is a point inside a polygon? • Compare slopes of two lines. • Distance between two points. • Do two line segments intersect? Given three points p , p , p , is p -p -p a counterclockwise turn? • 1 2 3 1 2 3 Other geometric shapes. • Triangle, rectangle, circle, sphere, cone, … • 3D and higher dimensions sometimes more complicated. 4 Intuition Warning: intuition may be misleading. • Humans have spatial intuition in 2D and 3D. • Computers do not. • Neither has good intuition in higher dimensions! Is a given polygon simple? no crossings 1 6 5 8 7 2 7 8 6 4 2 1 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 18 4 18 4 19 4 19 4 20 3 20 3 20 1 10 3 7 2 8 8 3 4 6 5 15 1 11 3 14 2 16 we think of this algorithm sees this 5 Polygon Inside, Outside Jordan curve theorem.
    [Show full text]
  • Introduction to Computational Social Choice
    1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures.
    [Show full text]
  • Mathematical Analysis of the Accordion Grating Illusion: a Differential Geometry Approach to Introduce the 3D Aperture Problem
    Neural Networks 24 (2011) 1093–1101 Contents lists available at SciVerse ScienceDirect Neural Networks journal homepage: www.elsevier.com/locate/neunet Mathematical analysis of the Accordion Grating illusion: A differential geometry approach to introduce the 3D aperture problem Arash Yazdanbakhsh a,b,∗, Simone Gori c,d a Cognitive and Neural Systems Department, Boston University, MA, 02215, United States b Neurobiology Department, Harvard Medical School, Boston, MA, 02115, United States c Universita' degli studi di Padova, Dipartimento di Psicologia Generale, Via Venezia 8, 35131 Padova, Italy d Developmental Neuropsychology Unit, Scientific Institute ``E. Medea'', Bosisio Parini, Lecco, Italy article info a b s t r a c t Keywords: When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern Visual illusion occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse Motion when the observer moves away. Such distortions present a new problem beyond the classical aperture Projection line Line of sight problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates Accordion Grating depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid Aperture problem distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a Differential geometry nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays. ' 2011 Elsevier Ltd. All rights reserved. 1. Introduction need for line-ends or intersections along the lines to explain the illusion.
    [Show full text]
  • Iasinstitute for Advanced Study
    IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J.
    [Show full text]
  • Randnla: Randomized Numerical Linear Algebra
    review articles DOI:10.1145/2842602 generation mechanisms—as an algo- Randomization offers new benefits rithmic or computational resource for the develop ment of improved algo- for large-scale linear algebra computations. rithms for fundamental matrix prob- lems such as matrix multiplication, BY PETROS DRINEAS AND MICHAEL W. MAHONEY least-squares (LS) approximation, low- rank matrix approxi mation, and Lapla- cian-based linear equ ation solvers. Randomized Numerical Linear Algebra (RandNLA) is an interdisci- RandNLA: plinary research area that exploits randomization as a computational resource to develop improved algo- rithms for large-scale linear algebra Randomized problems.32 From a foundational per- spective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathemat- Numerical ics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear Linear algebra). From an applied perspec- tive, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implemen- Algebra tations have already outperformed highly optimized software libraries for ubiquitous problems such as least- squares,4,35 with good scalability in par- allel and distributed environments. 52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis. MATRICES ARE UBIQUITOUS in computer science, statistics, and applied mathematics. An m × n key insights matrix can encode information about m objects ˽ Randomization isn’t just used to model noise in data; it can be a powerful (each described by n features), or the behavior of a computational resource to develop discretized differential operator on a finite element algorithms with improved running times and stability properties as well as mesh; an n × n positive-definite matrix can encode algorithms that are more interpretable in the correlations between all pairs of n objects, or the downstream data science applications.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar
    The Mathematics Enthusiast Volume 16 Article 15 Number 1 Numbers 1, 2, & 3 2-2019 A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/tme Recommended Citation Nasar, Audrey (2019) "A Mathematical Analysis of Student-Generated Sorting Algorithms," The Mathematics Enthusiast: Vol. 16 : No. 1 , Article 15. Available at: https://scholarworks.umt.edu/tme/vol16/iss1/15 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 16, nos.1, 2&3, p. 315 A Mathematical Analysis of student-generated sorting algorithms Audrey A. Nasar1 Borough of Manhattan Community College at the City University of New York Abstract: Sorting is a process we encounter very often in everyday life. Additionally it is a fundamental operation in computer science. Having been one of the first intensely studied problems in computer science, many different sorting algorithms have been developed and analyzed. Although algorithms are often taught as part of the computer science curriculum in the context of a programming language, the study of algorithms and algorithmic thinking, including the design, construction and analysis of algorithms, has pedagogical value in mathematics education. This paper will provide an introduction to computational complexity and efficiency, without the use of a programming language. It will also describe how these concepts can be incorporated into the existing high school or undergraduate mathematics curriculum through a mathematical analysis of student- generated sorting algorithms.
    [Show full text]
  • Arxiv:1912.01885V1 [Math.DG]
    DIRAC-HARMONIC MAPS WITH POTENTIAL VOLKER BRANDING Abstract. We study the influence of an additional scalar potential on various geometric and analytic properties of Dirac-harmonic maps. We will create a mathematical wishlist of the pos- sible benefits from inducing the potential term and point out that the latter cannot be achieved in general. Finally, we focus on several potentials that are motivated from supersymmetric quantum field theory. 1. Introduction and Results The supersymmetric nonlinear sigma model has received a lot of interest in modern quantum field theory, in particular in string theory, over the past decades. At the heart of this model is an action functional whose precise structure is fixed by the invariance under various symmetry operations. In the physics literature the model is most often formulated in the language of supergeome- try which is necessary to obtain the invariance of the action functional under supersymmetry transformations. For the physics background of the model we refer to [1] and [18, Chapter 3.4]. However, if one drops the invariance under supersymmetry transformations the resulting action functional can be investigated within the framework of geometric variational problems and many substantial results in this area of research could be achieved in the last years. To formulate this mathematical version of the supersymmetric nonlinear sigma model one fixes a Riemannian spin manifold (M, g), a second Riemannian manifold (N, h) and considers a map φ: M → N. The central ingredients in the resulting action functional are the Dirichlet energy for the map φ and the Dirac action for a spinor defined along the map φ.
    [Show full text]
  • The Orthosymplectic Lie Supergroup in Harmonic Analysis Kevin Coulembier
    The orthosymplectic Lie supergroup in harmonic analysis Kevin Coulembier Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Belgium Abstract. The study of harmonic analysis in superspace led to the Howe dual pair (O(m) × Sp(2n);sl2). This Howe dual pair is incomplete, which has several implications. These problems can be solved by introducing the orthosymplectic Lie supergroup OSp(mj2n). We introduce Lie supergroups in the supermanifold setting and show that everything is captured in the Harish-Chandra pair. We show the uniqueness of the supersphere integration as an orthosymplectically invariant linear functional. Finally we study the osp(mj2n)-representations of supersymmetric tensors for the natural module for osp(mj2n). Keywords: Howe dual pair, Lie supergroup, Lie superalgebra, harmonic analysis, supersphere PACS: 02.10.Ud, 20.30.Cj, 02.30.Px PRELIMINARIES Superspaces are spaces where one considers not only commuting but also anti-commuting variables. The 2n anti- commuting variables x`i generate the complex Grassmann algebra L2n. Definition 1. A supermanifold of dimension mj2n is a ringed space M = (M0;OM ), with M0 the underlying manifold of dimension m and OM the structure sheaf which is a sheaf of super-algebras with unity on M0. The sheaf OM satisfies the local triviality condition: there exists an open cover fUigi2I of M0 and isomorphisms of sheaves of super algebras T : Ui ! ¥ ⊗ L . i OM CUi 2n The sections of the structure sheaf are referred to as superfunctions on M . A morphism of supermanifolds ] ] F : M ! N is a morphism of ringed spaces (f;f ), f : M0 ! N0, f : ON ! f∗OM .
    [Show full text]
  • On P-Adic Mathematical Physics B
    ISSN 2070-0466, p-Adic Numbers, Ultrametric Analysis and Applications, 2009, Vol. 1, No. 1, pp. 1–17. c Pleiades Publishing, Ltd., 2009. REVIEW ARTICLES On p-Adic Mathematical Physics B. Dragovich1**, A. Yu. Khrennikov2***, S.V.Kozyrev3****,andI.V.Volovich3***** 1Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia 2Va¨xjo¨ University, Va¨xjo¨,Sweden 3 Steklov Mathematical Institute, ul. Gubkina 8, Moscow, 119991 Russia Received December 15, 2008 Abstract—A brief review of some selected topics in p-adic mathematical physics is presented. DOI: 10.1134/S2070046609010014 Key words: p-adic numbers, p-adic mathematical physics, complex systems, hierarchical structures, adeles, ultrametricity, string theory, quantum mechanics, quantum gravity, prob- ability, biological systems, cognitive science, genetic code, wavelets. 1. NUMBERS: RATIONAL, REAL, p-ADIC We present a brief review of some selected topics in p-adic mathematical physics. More details can be found in the references below and the other references are mainly contained therein. We hope that this brief introduction to some aspects of p-adic mathematical physics could be helpful for the readers of the first issue of the journal p-Adic Numbers, Ultrametric Analysis and Applications. The notion of numbers is basic not only in mathematics but also in physics and entire science. Most of modern science is based on mathematical analysis over real and complex numbers. However, it is turned out that for exploring complex hierarchical systems it is sometimes more fruitful to use analysis over p-adic numbers and ultrametric spaces. p-Adic numbers (see, e.g. [1]), introduced by Hensel, are widely used in mathematics: in number theory, algebraic geometry, representation theory, algebraic and arithmetical dynamics, and cryptography.
    [Show full text]
  • A History of Modern Numerical Linear Algebra
    Gene Golub, Stanford University 1 A History of Modern Numerical Linear Algebra Gene H. Golub Stanford University Gene Golub, Stanford University 2 What is Numerical Analysis? (a.k.a Scientific Computing) The definitions are becoming shorter... Webster’s New Collegiate Dictionary (1973): • ”The study of quantitative approximations to the solutions of mathematical problems including consideration of the errors and bounds to the errors involved.” The American Heritage Dictionary (1992): • ”The study of approximate solutions to mathematical problems, taking into account the extent of possible errors.” L. N. Trefethen, Oxford University (1992): • ”The study of algorithms for the problems of continuous mathematics.” Gene Golub, Stanford University 3 Numerical Analysis: How It All Started Numerical analysis motivated the development of the earliest computers. Ballistics • Solution of PDE’s • Data Analysis • Early pioneers included: J. von Neumann, A. M. Turing In the beginning... von Neumann & Goldstine (1947): ”Numerical Inversion of Matrices of High Order” Gene Golub, Stanford University 4 Numerical Linear Algebra Numerical Linear Algebra (NLA) is a small but active area of research: Less than 200 active, committed persons. But the community involves many scientists. Gene Golub, Stanford University 5 Top Ten Algorithms in Science (Jack Dongarra, 2000) 1. Metropolis Algorithm for Monte Carlo 2. Simplex Method for Linear Programming 3. Krylov Subspace Iteration Methods 4. The Decompositional Approach to Matrix Computations 5. The Fortran Optimizing Compiler 6. QR Algorithm for Computing Eigenvalues 7. Quicksort Algorithm for Sorting 8. Fast Fourier Transform 9. Integer Relation Detection 10. Fast Multipole Method Red: Algorithms within the exclusive domain of NLA research. • Blue: Algorithms strongly (though not exclusively) connected to NLA research.
    [Show full text]