Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus

Total Page:16

File Type:pdf, Size:1020Kb

Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus Cornea Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus Jin-Miao Li,1,2 Sangbae Kim,3 Yun Zhang,1 Fang Bian,1 Jiaoyue Hu,1 Rong Lu,1,2 Stephen C. Pflugfelder,1 Rui Chen,3 and De-Quan Li1 1Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China 3Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States Correspondence: De-Quan Li, PURPOSE. Differentiated from adult stem cells (ASCs), transit-amplifying cells (TACs) play Ocular Surface Center, Cullen Eye an important role in tissue homeostasis, development, and regeneration. This study aimed Institute, Department of to characterize the gene expression profile of a candidate TAC population in limbal basal Ophthalmology, Baylor College of epithelial cells using single-cell RNA sequencing (scRNA-seq). Medicine, 6565 Fannin Street, NC-505c, Houston, TX 77030, USA; METHODS. Single cells isolated from the basal corneal limbus were subjected to scRNA-seq [email protected]. using the 10x Genomics platform. Cell types were clustered by graph-based visualization Received: February 15, 2021 methods and unbiased computational analysis. BrdU proliferation assays, immunofluo- Accepted: June 22, 2021 rescent staining, and real-time reverse transcription quantitative polymerase chain reac- Published: July 23, 2021 tion were performed using multiple culture models of primary human limbal epithelial cells to characterize the TAC pool. Citation: Li J-M, Kim S, Zhang Y, et al. Single-cell transcriptomics RESULTS. Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters. identifies a unique entity and A unique cluster (3.21% of total cells) was identified as a TAC entity, based on its less signature markers of differentiated progenitor status and enriched exclusive proliferation marker genes, with transit-amplifying cells in human 98.1% cells in S and G2/M phases. The cell cycle-dependent genes were revealed to be corneal limbus. Invest Ophthalmol largely enriched by the TAC population. The top genes were characterized morpholog- Vis Sci. 2021;62(9):36. https://doi.org/10.1167/iovs.62.9.36 ically and functionally at protein and mRNA levels. The specific expression patterns of RRM2, TK1, CENPF, NUSAP1, UBE2C,andCDC20 were well correlated in a time- and cycle-dependent manner with proliferation stages in the cell growth and regeneration models. CONCLUSIONS. For the first time, to the best of our knowledge, we have identified aunique TAC entity and uncovered a group of cell cycle-dependent genes that serve as TAC signa- ture markers. The findings provide insight into ASCs and TACs and lay the foundation for understanding corneal homeostasis and diseases. Keywords: cell cycle-dependent genes, cornea, epithelium, limbal stem cells, single-cell transcriptomics, transit-amplifying cells dult stem cells (ASCs), also known as somatic stem cells the transit stage, or TACs, are capable of rapidly producing A or tissue-specific stem cells, are present in a variety many differentiated cells, not only during development but of human organs and tissues.1 ASCs are small populations also during regeneration. Thus, TACs have been identified as of quiescent, slow-cycling, undifferentiated cells with self- a subpopulation intermediate between ASCs and differenti- renew ability and high proliferative potentiality.2–4 ated cells.6,9,10 ASCs may generate differentiated progeny through asym- This stem cell/TAC model of tissue homeostasis is well metric or symmetric divisions.5–8 Asymmetric cell division recognized in multiple organisms and different organs and gives rise to one stem cell and one daughter cell committed tissues, including the skin and hair follicles, hematopoi- to progenitor cells or transit-amplifying cells (TACs), which etic system, intestine, nervous system, and corneal epithe- finally differentiate into functionally mature cells, regenerat- lium.6,10 The physiological and pathological roles of TACs ing all of the cell types of the tissue where they are located. in health and disease have been increasingly investigated Symmetric division yields two identical SCs or two daugh- and are broadly recognized in the research areas of tissue ter cells committed to differentiation. The essential feature homeostasis, wound healing, and regeneration, as well as in of this “transit” cell population is their capacity to generate malignant diseases such as cancer,9,11–13 although the field many maturing cells from very few cells. The cells entering of regenerative biology has tended to be stem cell-centric. Copyright 2021 The Authors iovs.arvojournals.org | ISSN: 1552-5783 1 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Downloaded from iovs.arvojournals.org on 09/26/2021 Single-Cell Transcriptomics Identifies TAC Entity IOVS | July 2021 | Vol. 62 | No. 9 | Article 36 | 2 The importance of TACs and their diverse functions goes performed following the manufacturer’s protocols (10x beyond merely producing tissues. Defects in regeneration Genomics, Pleasanton, CA, USA). Single-cell suspensions at or injury repair are also likely to be caused by problems in 1000 cells/μL in PBS were loaded onto a 10x Genomics TACs, not just in stem cells. The impact of TACs on stem cells Chromium Controller to generate a single-cell Gel Bead- and their niche may represent a pathogenesis and poten- in-Emulsion (GEM). The scRNA-seq library was prepared tial therapeutic targets for halting or reversing degenerative with Chromium Single Cell 3 Reagent Kit, version 2 diseases. Understanding TAC biology is of important signifi- (10x Genomics). The product was amplified by PCR and cance not only for elucidating the fundamental principles of sequenced on Illumina NovaSeq 6000 (Illumina, San Diego, tissue development and regeneration but also for advancing CA, USA). our current treatment of regenerative and neoplastic disease. It is worth mentioning, however, that some researchers believe that TACs do not contribute to epidermal homeosta- Bioinformatic Analysis of scRNA-seq Data sis and tissue formation. The existence of a TAC cell type Cell Ranger 2.1 software (10x Genomics) with default has been challenged by studies based on a model of mouse settings was used for alignment, barcode assignment, and 14 tail epidermis, raising the question of whether TACs are an unique molecular identifier (UMI) counting of the raw entity in their own right or represent a function. This argu- sequencing data with genome reference hg19 (Supplemen- ment has not been solved because most previous research tary Table S1). on TAC characterization and identification has been done at After generating the UMI count profile, we applied Seurat tissue and bulk cell population levels. 3.0 for quality control and downstream analysis.22 A global- The cutting-edge, high-throughput, single-cell RNA- scaling normalization method, LogNormalize, was employed sequencing (scRNA-seq) technology holds the promise to to normalize the gene expression measurements for each cell revolutionize our understanding of diseases and associated by the total expression, then the result was multiplied by a biological processes due to its unprecedented resolution. scale factor (10,000 by default) and log-transformed in each It has the power to reveal new cell types, identify unique dataset. For data alignment, we selected 1000 highly variable cell states, and dissect underlying heterogeneity in a high- genes in each data matrix and performed the FindIntegratio- 15,16 throughput and unbiased manner. Single-cell transcrip- nAnchors and IntegrateData functions. Next, we performed tomics opens a new door to uncovering and identifying TAC clustering using FindClusters to identify sub-cell-type clus- populations in adult tissues. ters. The Uniform Manifold Approximation and Projection The paradigm of limbal stem cells (LSCs), TACs, and (UMAP) results for each dataset were visualized if a cluster differentiated cells in the corneal epithelium has been widely was derived from both donors. accepted for more than three decades, and many features To identify differentially expressed genes (DEGs) in each 17–20 of TACs have been characterized. However, this distinct cluster, we used the FindAllMarkers function based on the epithelial cell population in the basal cornea limbus has Wilcoxon rank-sum test in Seurat. Cell-cycle scoring was not been well defined at the molecular level. In the present performed with cell-cycle phase marker genes using the Cell- study, we performed scRNA-seq on basal limbal epithelial CycleScoring function in Seurat.23,24 cells and identified a cell cluster with increased expression of proliferation-associated genes that may represent a TAC population. Primary Human Limbal Epithelial Cultures and In VitroCellGrowthandRegenerationModels MATERIALS AND METHODS Primary human limbal epithelial cells (HLECs) were cultured using explants from donor corneal limbal rims for multi- Donor Corneal Tissues and Single-Cell Isolation ple in vitro models by our previous methods.21,25 In brief, From the Corneal Limbal Epithelial Basal Layer for growth stages, cultures were collected at about 70% or Fresh human corneoscleral tissues were obtained from the 100% confluence for
Recommended publications
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Gene Knockdown of CENPA Reduces Sphere Forming Ability and Stemness of Glioblastoma Initiating Cells
    Neuroepigenetics 7 (2016) 6–18 Contents lists available at ScienceDirect Neuroepigenetics journal homepage: www.elsevier.com/locate/nepig Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells Jinan Behnan a,1, Zanina Grieg b,c,1, Mrinal Joel b,c, Ingunn Ramsness c, Biljana Stangeland a,b,⁎ a Department of Molecular Medicine, Institute of Basic Medical Sciences, The Medical Faculty, University of Oslo, Oslo, Norway b Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway c Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway article info abstract Article history: CENPA is a centromere-associated variant of histone H3 implicated in numerous malignancies. However, the Received 20 May 2016 role of this protein in glioblastoma (GBM) has not been demonstrated. GBM is one of the most aggressive Received in revised form 23 July 2016 human cancers. GBM initiating cells (GICs), contained within these tumors are deemed to convey Accepted 2 August 2016 characteristics such as invasiveness and resistance to therapy. Therefore, there is a strong rationale for targeting these cells. We investigated the expression of CENPA and other centromeric proteins (CENPs) in Keywords: fi CENPA GICs, GBM and variety of other cell types and tissues. Bioinformatics analysis identi ed the gene signature: fi Centromeric proteins high_CENP(AEFNM)/low_CENP(BCTQ) whose expression correlated with signi cantly worse GBM patient Glioblastoma survival. GBM Knockdown of CENPA reduced sphere forming ability, proliferation and cell viability of GICs. We also Brain tumor detected significant reduction in the expression of stemness marker SOX2 and the proliferation marker Glioblastoma initiating cells and therapeutic Ki67.
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • XBP1 Negatively Regulates CENPF Expression Via Recruiting Atf6α to the Promoter During ER Stress Tao Shen1* , Yan Li2,3, Shuang Liang4 and Zhiguang Chen1
    Shen et al. Cancer Cell Int (2020) 20:459 https://doi.org/10.1186/s12935-020-01553-9 Cancer Cell International PRIMARY RESEARCH Open Access XBP1 negatively regulates CENPF expression via recruiting ATF6α to the promoter during ER stress Tao Shen1* , Yan Li2,3, Shuang Liang4 and Zhiguang Chen1 Abstract Background: Centromere protein F (CENPF) is a key component of the kinetochore complex involved in mitosis, cell diferentiation and cellular response to stresses. However, the alteration of CENPF in response to endoplasmic reticulum (ER) stress has not been well described. In the present study, we investigate CENPF regulation in response to ER stress. Methods: Quantitative real-time polymerase chain reaction and western blotting were used to determine CENPF expression under ER stress. Luciferase activity analysis was performed to investigate the promoter regions contribut- ing to CENPF transcription in response to TG. Chromatin immunoprecipitation (ChIP) and ChIP Re-IP assays were used to determine if X-box binding protein 1 (XBP1) and/or activating transcription factor 6α (ATF6α) bind in the CENPF promoter region. Cell apoptosis and proliferation were analyzed using TUNEL, cell growth and clonogenic assays. Results: CENPF expression is dramatically reduced under ER stress induced by thapsigargin (TG), brefeldin A (BFA), or tunicamycin (TM) and this downregulation of CENPF expression was dependent on XBP1 and ATF6α. Luciferase activity analysis of the truncated CENPF promoter indicates that regions from bases 679 to 488 and from 241 to 78 in the CENPF promoter were sensitive to TG treatment. Additionally, ChIP and− ChIP Re-IP− assays reveal −that XBP1− and ATF6α were assembled on the same regions of CENPF promoter.
    [Show full text]
  • Explorative Bioinformatic Analysis of Cardiomyocytes in 2D &3D in Vitro Culture System
    EXPLORATIVE BIOINFORMATIC ANALYSIS OF CARDIOMYOCYTES IN 2D &3D IN VITRO CULTURE SYSTEM VERSION 2 Master Degree Project in Bioscience One years Level, 60 ECTS Sruthy Janardanan [email protected] Supervisor: Jane Synnergren [email protected] Examiner: Sanja Jurcevic [email protected] Abstract The in vitro cell culture models of human pluripotent stem cells (hPSC)-derived cardiomyocytes (CMs) have gained a predominant value in the field of drug discovery and is considered an attractive tool for cardiovascular disease modellings. However, despite several reports of different protocols for the hPSC-differentiation into CMs, the development of an efficient, controlled and reproducible 3D differentiation remains challenging. The main aim of this research study was to understand the changes in the gene expression as an impact of spatial orientation of hPSC-derived CMs in 2D(two-dimensional) and 3D(three-dimensional) culture conditions and to identify the topologically important Hub and Hub-Bottleneck proteins using centrality measures to gain new knowledge for standardizing the pre-clinical models for the regeneration of CMs. The above-mentioned aim was achieved through an extensive bioinformatic analysis on the list of differentially expressed genes (DEGs) identified from RNA-sequencing (RNA-Seq). Functional annotation analysis of the DEGs from both 2D and 3D was performed using Cytoscape plug-in ClueGO. Followed by the topological analysis of the protein-protein interaction network (PPIN) using two centrality parameters; Degree and Betweeness in Cytoscape plug-in CenTiScaPe. The results obtained revealed that compared to 2D, DEGs in 3D are primarily associated with cell signalling suggesting the interaction between cells as an impact of the 3D microenvironment and topological analysis revealed 32 and 39 proteins as Hub and Hub-Bottleneck proteins, respectively in 3D indicating the possibility of utilizing those identified genes and their corresponding proteins as cardiac disease biomarkers in future by further research.
    [Show full text]
  • How Does SUMO Participate in Spindle Organization?
    cells Review How Does SUMO Participate in Spindle Organization? Ariane Abrieu * and Dimitris Liakopoulos * CRBM, CNRS UMR5237, Université de Montpellier, 1919 route de Mende, 34090 Montpellier, France * Correspondence: [email protected] (A.A.); [email protected] (D.L.) Received: 5 July 2019; Accepted: 30 July 2019; Published: 31 July 2019 Abstract: The ubiquitin-like protein SUMO is a regulator involved in most cellular mechanisms. Recent studies have discovered new modes of function for this protein. Of particular interest is the ability of SUMO to organize proteins in larger assemblies, as well as the role of SUMO-dependent ubiquitylation in their disassembly. These mechanisms have been largely described in the context of DNA repair, transcriptional regulation, or signaling, while much less is known on how SUMO facilitates organization of microtubule-dependent processes during mitosis. Remarkably however, SUMO has been known for a long time to modify kinetochore proteins, while more recently, extensive proteomic screens have identified a large number of microtubule- and spindle-associated proteins that are SUMOylated. The aim of this review is to focus on the possible role of SUMOylation in organization of the spindle and kinetochore complexes. We summarize mitotic and microtubule/spindle-associated proteins that have been identified as SUMO conjugates and present examples regarding their regulation by SUMO. Moreover, we discuss the possible contribution of SUMOylation in organization of larger protein assemblies on the spindle, as well as the role of SUMO-targeted ubiquitylation in control of kinetochore assembly and function. Finally, we propose future directions regarding the study of SUMOylation in regulation of spindle organization and examine the potential of SUMO and SUMO-mediated degradation as target for antimitotic-based therapies.
    [Show full text]
  • CENPO Expression Regulates Gastric Cancer Cell Proliferation and Is Associated with Poor Patient Prognosis
    MOLECULAR MEDICINE REPORTS 20: 3661-3670, 2019 CENPO expression regulates gastric cancer cell proliferation and is associated with poor patient prognosis YI CAO1, JIANBO XIONG1, ZHENGRONG LI1, GUOYANG ZHANG1, YI TU2, LIZHEN WANG2 and ZHIGANG JIE1 Departments of 1Gastrointestinal Surgery and 2Pathology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received January 21, 2019; Accepted July 17, 2019 DOI: 10.3892/mmr.2019.10624 Abstract. Gastric cancer (GC) is one of the most common death worldwide (1-3). Due to the progression of GC and high malignancies worldwide; however, understanding of its devel- recurrence rates following surgical resection, GC remains a opment and carcinogenesis is currently limited. Centromere major public health issue. Therefore, elucidating the molecular protein O (CENPO), is a newly discovered constitutive mechanisms underlying GC tumorigenesis is required in order centromeric protein, associated with cell death. The expres- to identify prognostic markers and novel effective treatments. sion of CENPO in human cancers, including GC, is currently Previous studies have demonstrated that the normal expres- unknown. The aim of the present study was to investigate the sion of centromere proteins is essential for mitosis (4) and clinical association between CENPO and GC, and to eluci- abnormal core centromere proteins may increase the incidence date the potential mechanisms of CENPO in the process of of chromosomal instability, aneuploidy, and lead to oncogen- GC progression. The results demonstrated that CENPO was esis (5,6). In a previous study, >40 proteins were identified expressed at high levels in GC and was correlated with p-TNM in the interphase centromere complex (ICEN) by proteomic stage.
    [Show full text]
  • Supplementary Materials: Molecular Signature of Subtypes of Non- Small Cell Lung Cancer by Large-Scale Transcriptional Profiling
    Cancers 2020 S1 of S18 Supplementary Materials: Molecular Signature of Subtypes of Non- Small Cell Lung Cancer by Large-Scale Transcriptional Profiling: Identification of Key Modules and Genes by Weighted Gene Co- Expression Network Analysis (WGCNA) Magdalena Niemira, Francois Collin, Anna Szalkowska, Agnieszka Bielska, Karolina Chwialkowska, Joanna Reszec, Jacek Niklinski, Miroslaw Kwasniewski and Adam Kretowski Cancers 2020 S2 of S18 A B Figure S1. The top-ranked enriched canonical pathway identified in (A) SCC and (B) ADC using IPA: Eicosanoid signalling pathway. Cancers 2020 S3 of S18 A Cancers 2020 S4 of S18 Figure S2. The second-ranked enriched canonical pathway identified in (A) SCC and (B) ADC using IPA: Agranulocyte adhesion and diapedesis. Cancers 2020 S5 of S18 Figure S3. The top-ranked enriched canonical pathway identified only in lung ADC: MIF regulation of innate immunity. A B Figure S4. Cluster dendograms of the gene clusters of (A) LUAD and (B) LUSC subset from TCGA database. Cancers 2020 S6 of S18 A B C D Figure S5. Protein-protein interaction (PPI) network of genes in the red (A), lightcyan (B), darkorange (C), yellow (D) modules in ADC. The networks were constructed using Cytoscape v. 3.7.2. software. Cancers 2020 S7 of S18 A B Figure S6. Protein-protein interaction (PPI) network of genes in the blue (A) and (B) modules in SCC. The networks were constructed using Cytoscape v. 3.7.2. software. Cancers 2020 S8 of S18 Table S1. Upstream regulator analysis of DEGs in lung SCC predicted by IPA. Upstream Prediction Target
    [Show full text]
  • Upregulation of CENPF Is Linked to Aggressive Features of Osteosarcoma
    ONCOLOGY LETTERS 22: 648, 2021 Upregulation of CENPF is linked to aggressive features of osteosarcoma PING‑AN ZOU, ZHENG‑XU YANG, XI WANG and ZHI‑WEI TAO Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China Received July 15, 2020; Accepted April 20, 2021 DOI: 10.3892/ol.2021.12909 Abstract. Centromere protein F (CENPF) plays a key role in 800‑900 new cases are diagnosed of which ~400 occur in the regulation of the cell cycle. The present study revealed that children and adolescents under 20‑years of age recent decades CENPF was overexpressed in a variety of tumors and associ‑ years (3). Therefore, osteosarcoma has become the most common ated with the poor prognosis of osteosarcoma. The mRNA primary malignant bone tumor in children and adolescents (4). expression levels of CENPF were analyzed using the Gene Due to the combination of surgery and chemotherapy, the Expression Profiling Interactive Analysis database and the survival rate of osteosarcoma has been significantly improved protein levels of CENPF were detected in the specimens from with a current overall expected cure rate of 50‑65% (5). patients with osteosarcoma using immunohistochemistry. Centromere protein F (CENPF) encodes a protein that Cell proliferation, cell cycle and flow cytometry assays were binds with the centromere‑kinetochore complex, and is performed after the transfection of control or CENPF plas‑ located on the human chromosomal 1q41 (6). CENPF is a cell mids into osteosarcoma cells. A xenografts assay was used to cycle‑associated nuclear protein that is expressed at low levels determine the effects of CENPF on tumor growth in vivo.
    [Show full text]
  • Essential Role of Microphthalmia Transcription Factor for DNA Replication, Mitosis and Genomic Stability in Melanoma
    Oncogene (2011) 30, 2319–2332 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma T Strub1,4, S Giuliano2,4,TYe1, C Bonet2, C Keime1, D Kobi1, S Le Gras1, M Cormont3, R Ballotti2, C Bertolotto2 and I Davidson1 1Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, CNRS, INSERM, Universite´ de Strasbourg, Illkirch, France; 2INSERM U895 Team 1 and Department of Dermatology, CHU Nice, France and 3INSERM U895 Team 7, Nice, France Malignant melanoma is an aggressive cancer known use of internal promoters (Steingrimsson, 2008). The for its notorious resistance to most current therapies. MITF-M isoform (hereafter designated simply as The basic helix-loop-helix microphthalmia transcription MITF) is the major form produced specifically in the factor (MITF) is the master regulator determining the melanocyte lineage from an intronic promoter (Goding, identity and properties of the melanocyte lineage, and is 2000b). MITF is essential for the survival of melano- regarded as a lineage-specific ‘oncogene’ that has a blasts and postnatal melanocytes (McGill et al., 2002; critical role in the pathogenesis of melanoma. MITF Hou and Pavan, 2008), in which it also controls the promotes melanoma cell proliferation, whereas sustained expression of genes required for the melanin synthesis supression of MITF expression leads to senescence. (Bertolotto et al., 1998). By combining chromatin immunoprecipitation coupled to In addition to regulating multiple aspects of normal high throughput sequencing (ChIP-seq) and RNA sequen- melanocyte function, MITF also has a critical role in cing analyses, we show that MITF directly regulates a melanoma, in which it is required for survival, and set of genes required for DNA replication, repair and controls the proliferation, invasive and metastatic mitosis.
    [Show full text]
  • The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases
    cells Review The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases 1, , 2 1, , Francesca Degrassi * y , Michela Damizia and Patrizia Lavia * y 1 IBPM Institute of Molecular Biology and Pathology, CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Roma, Italy 2 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Roma, Italy; [email protected] * Correspondence: [email protected] (F.D.); [email protected] (P.L.); Tel.: +39-06-49917517 (F.D.); +39-06-49917536 (P.L.) These authors contributed equally to this work. y Received: 20 November 2019; Accepted: 21 December 2019; Published: 24 December 2019 Abstract: Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system. Keywords: microcephaly; mitotic apparatus; kinetochore; chromosome segregation; neural progenitors 1. Introduction Regulators of the mitotic apparatus play key roles in orchestrating chromosome segregation.
    [Show full text]
  • Miro-Dependent Mitochondrial Pool of CENP-F and Its Farnesylated C-Terminal Domain Are Dispensable for Normal Development in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/415315; this version posted September 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice Martin Peterka1,2, Benoît Kornmann1,* 1Institute of Biochemistry, ETH Zurich, 8093 Zürich, Switzerland 2Zurich Life-Science Graduate School, Molecular Life Science Program *Correspondence to [email protected] ABSTRACT CENP-F is a large, microtubule-binding protein that regulates multiple cellular processes including chromosome segregation and mitochondrial trafficking at cytokinesis. This multiplicity of function is mediated through the binding of various partners, like Bub1 at the kinetochore and Miro at mito- chondria. Due to the multifunctionality of CENP-F, the cellular phenotypes observed upon its deple- tion are difficult to interpret and there is a need to genetically separate its different functions by preventing binding to selected partners. Here we engineer a CENP-F point-mutant that is deficient in Miro binding and thus is unable to localize to mitochondria, but retains other localizations. We introduced this mutation in cultured human cells using CRISPR/Cas9 and show it causes a defect in mitochondrial spreading similar to that observed upon Miro depletion. We further create a mouse model carrying this CENP-F variant, as well as truncated CENP-F mutants lacking the farnesylated C-terminus of the protein.
    [Show full text]