Osis of the Opposite Eye; (7) Temporal Hemianopsia With

Total Page:16

File Type:pdf, Size:1020Kb

Osis of the Opposite Eye; (7) Temporal Hemianopsia With STUDY OF THE PATHOLOGIC CHANGES IN THE OPTIC NERVES AND CHIASM IN COMPARISON WITH CHANGES IN THE VISUAL FIELD IN ASSO- CIATION WITH LARGE PITUITARY TUMORS* WALTER I. LILLIE, M.D. Rochester, Minnesota The ophthalmologic syndromes produced by lesions near -or at the optic chiasm have been well described and definitely established by many authors, but studies of the pathologic changes in the optic nerves and chiasm, and attempts to correlate these with defects in the visual field, are much less numerous. This is true especially when the causative factor is restricted to pituitary tumors. For this reason I studied four cases of extraordinarily large pituitary tumor in which necropsy was performed. These cases were chosen because the bitemporal hemianopic defects in the fields could be correlated with the pathologic changes in the optic nerves and chiasm. The ocular symptoms and signs produced by pituitary tumors may be summarized as follows: (1) Lowered central visual acuity; (2) pallor of the optic discs or simple optic atrophy; (3) bitemporal hemianopsia for various colors or for all colors; (4) bitemporal hemianopsia for form and colors; (5) bitemporal scotomatous hemianopsia for colors or form or for both; (6) temporal hemianopsia with amaur- osis of the opposite eye; (7) temporal hemianopsia with successive changes that lead to amaurosis, such as central scotoma, cecocentral scotoma, enlargement of the scotoma, with islets of vision and amaurosis; (8) homonymous herni- * From the Section on Ophthalmology, The Mayo Clinic, Rochester, Minnesota. Candidate's thesis for membership accepted by the Committee on Theses. 15 433 434 LILLIE: Changes in Optic Nerves and Chiasm anopic scotoma for colors or form or for both; (9) homony- mous hemianopsia for colors, and (10) homonymous hemian- opsia for form and colors. An important feature of the defects in the visual fields produced by pituitary tumors is the asymmetry,-whether bitemporal or homonymous in type,-in contrast to the sym- metrical defects produced by lesions which affect the optic tracts or optic radiations. This can readily be explained by the anatomic variations in the position of the optic chiasm in relation to the pituitary gland. This was reviewed by Fisherand byTraquair, and later summarized and enlarged on by de Schweinitz, who called attention to the thorough ana- tomic investigations of Schaeffer, which were published later. The earliest visual defects produced by pituitary tumors are found in the cecocentral region. They have been well described by Josefson, Fisher, Traquair, Wilbrand and Saenger, Cushing and Walker, Hill, Ronne, de Schweinitz, and Lillie. These defects have been variously described as "zones of deadened perception," paracentral scotomas, en- larged blind spots, and cecocentral scotomas, but Traquair's expression that the scotomas "behave like the general field" best describes these changes. The behavior of the general field was clearly established by Josefson, Fisher, and Cush- ing and Walker, working independently of one another. Although the central visual pathways were well estab- lished by Henschen, it was not until Walker and Cushing made detailed studies of the pathologic changes in the optic nerve that correlation of the defects in the visual field and the pathologic changes in the optic nerve was attempted in chiasmal lesions. Their conclusions were: "1, Despite the so-called atrophic pallor -of the discs in patients having visual-field defects resulting from lesions in the chiasmal regions, the histologic examination of the nerves fails to show the expected degree of fiber degeneration unless the process has been of long duration; 2, the atrophy in the tracts LILLIE: Changes in Optic Nerves and Chiasm 435 considerably antedates that in the nerves, where the fibers. may be preserved by their retinal ganglion cells for several years after complete functional blindness has occurred; 3, our cases serve to illustrate the fact that in the presence of chiasmal pressure of known long duration associated with sharply cut hemianopsias, even when to the ophthalmoscope the nerve shows the pallor of presumed atrophy, there may be no corresponding sharp delineation of the areas of atrophy- in the cross-sections of the nerve; 4, this at first sight wouldt appear to be an inconsistency, but our more accurate peri- metric findings with graded discs show that, after all, the boundaries of the seeing areas are less sharply cut than we had previously supposed, and perhaps correspond after all with the diffuse picture in the nerves." The following four cases are reported in an attempt to show that the microscopic changes, in the optic nerves and chiasm, are sufficient that the type of defect in the visual field can be postulated fairly accurately. These changes seem to be due primarily to a definite groove produced by the arteries of the anterior portion of the circle of Willi's, when the pituitary tumor enlarges and displaces the optic chiasm forward and upward. CASE 1.-Chromophobe adenoma of the pituitary gland, inr which the right anterior cerebral artery affected the optic nerves primarily and produced the defects in the visual field. A farmer, aged forty-five years, came for examination because of loss of vision in the right eye of eighteen months' duration, and failing vision in the left eye during the last month. The visual loss had been progressive. The man did not have other complaints. except that he had had headaches, situated in the frontal region,, during the last ten months. The systolic blood-pressure, in millimeters of mercury, was 132, and the diastolic, 90. The basal metabolic rate was -3 per cent. Roentgenographic examination of the teeth revealed two with periapical infection, and there was mild infection of the tonsils. Roentgenograms of the skull gave evidence of enlargement of the 436 LILLIE: Changes in Optic Nerves and Chiasm sella turcica, with calcification of the pineal gland. Ophthalmic examination demonstrated the ability to perceive light with the right eye and to count fingers with the left. The right pupil was larger than the left and did not react to stimulation by direct light, but reacted normally to consensual light. The left pupil reacted promptly to direct light, but there was no response to consensual light. On ophthalmoscopic examination evidence of simple optic atrophy was found in the right eye, and a normal fundus in the left. The perimetric fields revealed the following: a small area in the nasal portion of the field of the right eye that was sensitive to stimulation by light; in the left eye, concentric contraction to form and color, with a large blind spot and small, absolute central scotoma (fig. 1). The neurologic examination gave negative results. A diagnosis of pituitary tumor was made, and at the operation the surgeon found a brownish-green pituitary tumor that was cystic in nature. The cyst rested on the superior aspect of the optic chiasm, and when the tumor was opened, soft, pulpy, reddish- brown material was obtained. A second similar mass was situated in the sella turcica. After the contents had been removed the capsule collapsed, exposing the optic chiasm and both optic nerves. The left optic nerve was fairly well preserved. The right optic nerve was considerably flattened, but removal of the contents of the cyst relieved the nerve of all pressure. The patient's post-operative course was uneventful until the eighth day, when the concentration of urea in the blood increased to 84 mg. in each 100 c.c., and the blood-pressure dropped to 70 systolic and 40 diastolic. The patient died on the tenth day. At necropsy a frontal decompression was noted, with a slight amount of hemorrhage around the operative site. An attempt was made to remove the brain in the usual way, but a large tumor was found projecting from the sella turcica upward toward the third ventricle. The brain was removed, leaving the optic nerves and chiasm attached to the tumor, and a large cavity was found dis- placing the floor of the third ventricle upward. There was only slight evidence of increased intracranial pressure. On examination of the tumor it was seen that the posterior clinoid processes were eroded, displaced, and partly destroyed. The optic nerves were dislocated upward, sharply angulated on -themselves, and pressed between the tumor mass and the superior margin of the orbital foramen. They were flattened and ribbon- .f.E. as.E lop. Does not recognise green color o.e. O.D: Simple optic atrophy 0.8: SNggtive Fig. 1.-Case 1. Temporal hemianopsia of right eye and con- centric contraction for form and colors in left eye, associated with absolute central scotoma. Fig. 2.-Case 1. Definite grooving of the right and left optic nerves, just in front of the optic chiasm, by the right anterior cerebral artery. _".40 ... VIO'-~; Iw m" Op Fig. 3.-Case 1. Cross-section of the right optic nerve, revealing destruction of the myelin sheaths. Fig. 4.-Case 1. Cross-section of the left optic nerve, revealing less destruction of the myelin sheaths than in figure 3. Fig. 5.-Case 1. Cross-section of the optic chiasm, which is flattened, and in which there has been considerable destruction of the mvelin sheaths. LILLIE: Changes in Optic Nerves and Chiasm 437 like on their superior surfaces, and there were deep grooves in the nerves where the right anterior cerebral artery had lain (fig. 2). Grooving of the nerves by the artery had destroyed the substance of the nerves, especially the right one. On the right side also the tumor had projected laterally into the Gasserian ganglion, which was much distended and bulged laterally. On longitudinal section through the tumor it was found to have invaded the sphenoid sinus. A large part of the tumor had been removed surgically and had been replaced by blood-clot.
Recommended publications
  • URGENT/EMERGENT When to Refer Financial Disclosure
    URGENT/EMERGENT When to Refer Financial Disclosure Speaker, Amy Eston, M.D. has a financial interest/agreement or affiliation with Lansing Ophthalmology, where she is employed as a ophthalmologist. 58 yr old WF with 6 month history of decreased vision left eye. Ache behind the left eye for 2-3 months. Using husband’s contact lens solution made it feel better. Seen by two eye care professionals. Given glasses & told eye exam was normal. No past ocular history Medical history of depression Takes only aspirin and vitamins 20/20 OD 20/30 OS Eye Pressure 15 OD 16 OS – normal Dilated fundus exam & slit lamp were normal Pupillary exam was normal Extraocular movements were full Confrontation visual fields were full No red desaturation Color vision was slightly decreased but the same in both eyes Amsler grid testing was normal OCT disc – OD normal OS slight decreased RNFL OCT of the macula was normal Most common diagnoses: Dry Eye Optic Neuritis Treatment - copious amount of artificial tears. Return to recheck refraction Visual field testing Visual Field testing - Small defect in the right eye Large nasal defect in the left eye Visual Field - Right Hemianopsia. MRI which showed a subacute parietal and occipital lobe infarct. ANISOCORIA Size of the Pupil Constrictor muscles innervated by the Parasympathetic system & Dilating muscles innervated by the Sympathetic system The Sympathetic System Begins in the hypothalamus, travels through the brainstem. Then through the upper chest, up through the neck and to the eye. The Sympathetic System innervates Mueller’s muscle which helps to elevate the upper eyelid.
    [Show full text]
  • Oct Institute
    Low Vision, Visual Dysfunction and TBI – Treatment, Considerations, Adaptations Andrea Hubbard, OTD, OTR/L, LDE Objectives • In this course, participants will: 1. Learn about interventions involving specialized equipment to adapt an environment for clients with low vision. 2. Learn about the most typical low vision presentations/conditions. 3. Gain increased knowledge of eye anatomy and the visual pathway. Overview of TBI Reference: Centers for Disease Control and Prevention Overview of TBI Risk Factors for TBI Among non-fatal TBI-related injuries for 2006–2010: • Men had higher rates of TBI hospitalizations and ED visits than women. • Hospitalization rates were highest among persons aged 65 years and older. • Rates of ED visits were highest for children aged 0-4 years. • Falls were the leading cause of TBI-related ED visits for all but one age group. – Assaults were the leading cause of TBI-related ED visits for persons 15 to 24 years of age. • The leading cause of TBI-related hospitalizations varied by age: – Falls were the leading cause among children ages 0-14 and adults 45 years and older. – Motor vehicle crashes were the leading cause of hospitalizations for adolescents and persons ages 15-44 years. Reference: Centers for Disease Control and Prevention Overview of TBI Risk Factors for TBI Among TBI-related deaths in 2006–2010: • Men were nearly three times as likely to die as women. • Rates were highest for persons 65 years and older. • The leading cause of TBI-related death varied by age. – Falls were the leading cause of death for persons 65 years or older.
    [Show full text]
  • Neuroanatomy Crash Course
    Neuroanatomy Crash Course Jens Vikse ∙ Bendik Myhre ∙ Danielle Mellis Nilsson ∙ Karoline Hanevik Illustrated by: Peder Olai Skjeflo Holman ​ Second edition October 2015 The autonomic nervous system ● Division of the autonomic nervous system …………....……………………………..………….…………... 2 ● Effects of parasympathetic and sympathetic stimulation…………………………...……...……………….. 2 ● Parasympathetic ganglia ……………………………………………………………...…………....………….. 4 Cranial nerves ● Cranial nerve reflexes ………………………………………………………………….…………..…………... 7 ● Olfactory nerve (CN I) ………………………………………………………………….…………..…………... 7 ● Optic nerve (CN II) ……………………………………………………………………..…………...………….. 7 ● Pupillary light reflex …………………………………………………………………….…………...………….. 7 ● Visual field defects ……………………………………………...................................…………..………….. 8 ● Eye dynamics …………………………………………………………………………...…………...………….. 8 ● Oculomotor nerve (CN III) ……………………………………………………………...…………..………….. 9 ● Trochlear nerve (CN IV) ………………………………………………………………..…………..………….. 9 ● Trigeminal nerve (CN V) ……………………………………………………................…………..………….. 9 ● Abducens nerve (CN VI) ………………………………………………………………..…………..………….. 9 ● Facial nerve (CN VII) …………………………………………………………………...…………..………….. 10 ● Vestibulocochlear nerve (CN VIII) …………………………………………………….…………...…………. 10 ● Glossopharyngeal nerve (CN IX) …………………………………………….……….…………...………….. 10 ● Vagus nerve (CN X) …………………………………………………………..………..…………...………….. 10 ● Accessory nerve (CN XI) ……………………………………………………...………..…………..………….. 11 ● Hypoglossal nerve (CN XII) …………………………………………………..………..…………...………….
    [Show full text]
  • Visual Dysfunction in Optic Chiasm Syndrome an Atomy
    1 4/12/2019 Optic chiasm, most important Arrangement of visual fibers Characteristic of visual field VISUAL DYSFUNCTION Bitemporal defects: IN OPTIC CHIASM SYNDROME Superior Inferior Complete Peripheral, central M.HIDAYAT FACULTY OF MEDICINE, A N DALAS UNIVERSITY /M .DJAMIL HOSPITAL PADANG AN ATOMY OF CHIASM OPTIC CHIASM Width : 12 mm 53% fiber from nasal retina crossed to opposite — Length : 8 mmfantero posterior) contra lateral. ■ Inclined : 45 0 Inferior nasal fibers cross anterior loop in to contra lateral (Willbrand's knee) Location : anterior hypothalamus & anterior third Macular fiber cross posterosuperior ventricle 10 mm above sella Vascular supply: Anterior communicating artery Anterior cerebri artery Circle of Willis ANTERIOR ANGLE OF CHIASM Compression to anterior angle of chiasm Small lesion damages the crossing fibers of ipsilaferal eye -> field defect: monocular and temporal Damage of macular crossed fibers: monocular, temporal defects and parasentral scotoma Damage fiber from nasal contralateral, anterior extension : central ipsilateral scotoma and contralateral upper temporal quadrant {"Willbrand’s Knee") 1 4/12/2019 Chiasmal compression from below defects stereotyped pattern : bitemporal defect Example: pituitary adenoma Peripheral fiber damage, defects begin from superior quadrants of both eyes Can be not similar Similar defects causes from tubercullum sellae, meningioma, craniopharyngiomas, aneurysm t Sella or supra sella lesion : damage superior fiber defect bitemporal inferior Bitemporal Hemianopsia Example: angioma
    [Show full text]
  • Central Serous Choroidopathy
    Br J Ophthalmol: first published as 10.1136/bjo.66.4.240 on 1 April 1982. Downloaded from British Journal ofOphthalmology, 1982, 66, 240-241 Visual disturbances during pregnancy caused by central serous choroidopathy J. R. M. CRUYSBERG AND A. F. DEUTMAN From the Institute of Ophthalmology, University of Nijmegen, Nijmegen, The Netherlands SUMMARY Three patients had during pregnancy visual disturbances caused by central serous choroidopathy. One of them had a central scotoma in her first and second pregnancy. The 2 other patients had a central scotoma in their first pregnancy. Symptoms disappeared spontaneously after delivery. Except for the ocular abnormalities the pregnancies were without complications. The complaints can be misinterpreted as pregnancy-related optic neuritis or compressive optic neuropathy, but careful biomicroscopy of the ocular fundus should avoid superfluous diagnostic and therapeutic measures. Central serous choroidopathy (previously called lamp biomicroscopy of the fundus with a Goldmann central serous retinopathy) is a spontaneous serous contact lens showed a serous detachment of the detachment of the sensory retina due to focal leakage neurosensory retina in the macular region of the from the choriocapillaris, causing serous fluid affected left eye. Fluorescein angiography was not accumulation between the retina and pigment performed because of pregnancy. In her first epithelium. This benign disorder occurs in healthy pregnancy the patient had consulted an ophthal- adults between 20 and 45 years of age, who present mologist on 13 June 1977 for exactly the same with symptoms of diminished visual acuity, relative symptoms, which had disappeared spontaneously http://bjo.bmj.com/ central scotoma, metamorphopsia, and micropsia. after delivery.
    [Show full text]
  • Neuroimaging in Ophthalmology
    Saudi Journal of Ophthalmology (2012) 26, 401–407 Oculoplastic Imaging Update Neuroimaging in ophthalmology ⇑ James D. Kim, MD, MS b; Nafiseh Hashemi, MD a; Rachel Gelman, BA c; Andrew G. Lee, MD a,b,c,d,e, Abstract In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, manage- ment, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. Keywords: Neuroophthalmology, Imaging, Magnetic resonance imaging, Computed tomography Ó 2012 Saudi Ophthalmological Society, King Saud University. All rights reserved. http://dx.doi.org/10.1016/j.sjopt.2012.07.001 Introduction Computed tomography Advances in neuroimaging have revolutionized the evalua- The computed tomography (CT) scan obtains image by tion, management, and treatment of neuro-ophthalmic disor- conventional X-ray technology. The CT X-ray source moves ders. Despite the ever-increasing resolution ability of modern around the patient and the X-ray detectors located on the neuroimaging technology, it remains critical that both the opposite side of the X-ray source measure the amount of ordering eye physician and the interpreting radiologist com- attenuation.
    [Show full text]
  • Eleventh Edition
    SUPPLEMENT TO April 15, 2009 A JOBSON PUBLICATION www.revoptom.com Eleventh Edition Joseph W. Sowka, O.D., FAAO, Dipl. Andrew S. Gurwood, O.D., FAAO, Dipl. Alan G. Kabat, O.D., FAAO Supported by an unrestricted grant from Alcon, Inc. 001_ro0409_handbook 4/2/09 9:42 AM Page 4 TABLE OF CONTENTS Eyelids & Adnexa Conjunctiva & Sclera Cornea Uvea & Glaucoma Viitreous & Retiina Neuro-Ophthalmic Disease Oculosystemic Disease EYELIDS & ADNEXA VITREOUS & RETINA Blow-Out Fracture................................................ 6 Asteroid Hyalosis ................................................33 Acquired Ptosis ................................................... 7 Retinal Arterial Macroaneurysm............................34 Acquired Entropion ............................................. 9 Retinal Emboli.....................................................36 Verruca & Papilloma............................................11 Hypertensive Retinopathy.....................................37 Idiopathic Juxtafoveal Retinal Telangiectasia...........39 CONJUNCTIVA & SCLERA Ocular Ischemic Syndrome...................................40 Scleral Melt ........................................................13 Retinal Artery Occlusion ......................................42 Giant Papillary Conjunctivitis................................14 Conjunctival Lymphoma .......................................15 NEURO-OPHTHALMIC DISEASE Blue Sclera .........................................................17 Dorsal Midbrain Syndrome ..................................45
    [Show full text]
  • Intracranial Mass Lesion in a Patient Being Followed up for Amblyopia
    DOI: 10.4274/tjo.galenos.2020.36360 Turk J Ophthalmol 2020;50:317-320 Case Report Intracranial Mass Lesion in a Patient Being Followed up for Amblyopia Ali Mert Koçer, Bayazıt İlhan, Anıl Güngör Ulucanlar Ophthalmology Trainig and Research Hospital, Clinic of Ophthalmology, Ankara, Turkey Abstract A 12-year-old boy being followed up for amblyopia presented to our hospital with visual disturbance in the left eye. The patient’s best corrected visual acuity on Snellen chart was 1.0 in the right eye and 0.3 in the left eye. Increased horizontal cup-to-disc ratio was detected on dilated fundus examination. Retinal nerve fiber layer measurement showed diffuse nerve fiber loss and visual field test showed bitemporal hemianopsia. Magnetic resonance imaging revealed a lesion that filled and widened the sella and suprasellar cistern and compressed the optic chiasm. The patient was operated with transcranial approach. The pathologic examination revealed craniopharyngioma. Keywords: Amblyopia, craniopharyngioma, hemianopsia Introduction cylindrical refractive errors of 1.5-2 diopters (D) or more and is more common in hyperopic eyes than in myopia.2 Amblyopia is poor best corrected visual acuity (BCVA) in one Craniopharyngioma is a benign tumor that develops from or both eyes due to low vision or abnormal binocular interaction the remnant of Rathke’s pouch and is located in the sellar/ without any detectable structural defect in the eye or visual parasellar region.3 It shows a bimodal age distribution, with pathways. Amblyopic vision loss can be corrected if treated at patients usually diagnosed between the ages of 5 and 14 or after an early age.
    [Show full text]
  • VISUAL FIELD Pathway Extends from the „Front‟ to the „Back‟ of the RETINA Brain
    NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholde r to insert your own image. Visual Pathway Disorders Amr Hassan, MD, FEBN Associate professor of Neurology - Cairo University Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 2 Optic nerve • Anatomy of visual pathway • How to examine • Visual pathway disorders • Quiz 3 Optic nerve The Visual Pathway VISUAL FIELD Pathway extends from the „front‟ to the „back‟ of the RETINA brain. ON OC OT LGN OPTIC RADIATIONS ON = Optic Nerve OC = Optic Chiasm OT = Optic Tract LGN = Lateral Geniculate Nucleus of Thalamus VISUAL CORTEX 5 The Visual Pathway Eyes & Retina Light >> lens >> retina (inverted and reversed image). Eyes & Retina Eyes & Retina • Macula: oval region approximately 3-5 mm that surrounds the fovea, also has high visual acuity. • Fovea: central fixation point of each eye// region of the retina with highest visual acuity. Eyes & Retina • Optic disc: region where axons leaving the retina gather to form the Optic nerve. Eyes & Retina • Blind spot located 15° lateral and inferior to central fixation point of each eye. Object to be seen Peripheral Retina Central Retina (fovea in the macula lutea) 12 Photoreceptors © Stephen E. Palmer, 2002 Photoreceptors Cones • Cone-shaped • Less sensitive • Operate in high light • Color vision • Less numerous • Highly represented in the fovea >> have high spatial & temporal resolution >> they detect colors. © Stephen E. Palmer, 2002 Photoreceptors Rods • Rod-shaped • Highly sensitive • Operate at night • Gray-scale vision • More numerous than cons- 20:1, have poor spatial & temporal resolution of visual stimuli, do not detect colors >> vision in low level lighting conditions © Stephen E.
    [Show full text]
  • Visual Field Defects and Aphasia Testing : a Proposed Adaptation of the Boston Diagnostic Aphasia Examination
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1985 Visual field defects and aphasia testing : a proposed adaptation of the Boston diagnostic aphasia examination. Laura L. Smith The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Smith, Laura L., "Visual field defects and aphasia testing : a proposed adaptation of the Boston diagnostic aphasia examination." (1985). Graduate Student Theses, Dissertations, & Professional Papers. 7199. https://scholarworks.umt.edu/etd/7199 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 This is an unpublished m a n u s c r i p t in w h i c h copyright s u b ­ s i s t s . Any further rep r i n t i n g of its contents must be a p p r o v e d BY THE AUTHOR. Ma n s f i e l d Library Uni v e r s i t y of Montana Date : 1 S o o ______ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Visual Field Defects and Aphasia Testing: A Proposed Adaptation of the Boston Diagnostic Aphasia Examination by Laura L.
    [Show full text]
  • Permanent Central Scotoma Caused by Looking at the Sun During an Eclipse, and Complicated by Uniocular, Transi- Ent, Revolving Hemianopsia
    PERMANENT CENTRAL SCOTOMA CAUSED BY LOOKING AT THE SUN DURING AN ECLIPSE, AND COMPLICATED BY UNIOCULAR, TRANSI- ENT, REVOLVING HEMIANOPSIA. From Dr. Knapp’s Practice, Reported by Dr. A. DUANE, New York. Reprinted from the Archives of Ophthalmology, Vol. xxiv., No. i, 1895 PERMANENT CENTRAL SCOTOMA CAUSED BY LOOKING AT THE SUN DURING AN ECLIPSE, AND COMPLICATED BY UNIOCULAR, TRANSI- ENT, REVOLVING HEMIANOPSIA. From Dr. Knapp’s Practice, Reported by Dr. A. DUANE, New York, instances of central scotoma after expos- ALTHOUGHure to sunlight are by no means rare, the subjoined case seems worthy ofrecord, because of the persistence of the scotoma twelve years afterwards, and because of the pres- ence of a peculiar hemiopic and scotoma scintil- lans, which apparently was likewise the result of the action of the sun’s rays. The patient, P. W., a man twenty-four years of age, consulted Dr. Knapp on Feb. 5, 1895, and gave the following history: Twelve years previous he had, on the occasion of the transit of Venus, 1 looked directly at the sun through the tube formed by the nearly closed fist. Soon after, he found that when both eyes were open, but not when the left was closed, a greenish cloud hid com- pletely the centre of every object looked at. This had exactly the shape of the illuminated portion of the sun at the time of the transit, i. e., was a circle with a crescentic defect at the upper part corresponding to the spot occupied by the planet at the time. It was then of considerable size, covering an area 5 inches in width when projected upon a surface 15 or 20 inches off.
    [Show full text]
  • Arşiv Kaynak Tarama Dergisi Gebelik Ve
    Arşiv Kaynak Tarama Dergisi Archives Medical Review Journal Pregnancy and Eye Gebelik ve Göz Anubhav Chauhan Department of Ophthalmology, Regional Hospital Hamirpur, Himachal Pradesh, India ABSTRACT Visual obscurations are common during pregnancy. The ocular effects of pregnancy may be physiological, pathological or may be modifications of pre-existing conditions. While most of the described changes are transient in nature, others extend beyond delivery and may lead to permanent visual impairment. Also, pregnancy can affect vision through systemic disease that are either specific to the pregnancy itself or systemic diseases that occur more frequently in relation to pregnancy. Neuro-ophthalmological disorders should be kept in mind in pregnant women presenting with visual acuity or field loss. Therefore, it is important to be aware of the ocular changes in pregnancy in order to counsel and advice women who currently are, or are planning to become pregnant. Key words: Ocular, pregnancy, blindness. ÖZET Göz kararmaları gebelikte yaygın olarak görülür. Gebeliğin göze etkileri fizyolojik, patolojik ya da önceden var olmuş modifikasyonlar olabilir. Tanımlanan değişikliklerin çoğu doğal olarak ortaya çıkarken genelde geçicidir fakat diğerleri doğumdan sonrasına aktarılarak kalıcı görme bozukluğuna neden olabilir. Ayrıca gebelik ya da gebeliğin kendine özgü sistemik hastalıklar veya gebelik ile ilişkili daha sık meydana gelen sistemik hastalıklar aracılığıyla görüşü etkileyebilir. Nöro-oftalmolojik bozukluklar gebe kadınlarda görsel netlik ya da görsel alan kaybı ile başvurduklarında akılda bulundurulmalıdır. Bu bağlamda gebelik planlaması yapan kadınlara danışma ve tavsiye verme için gebelikteki oküler değişikliklerinin farkında olmak çok büyük önem arz etmektedir. Anahtar kelimeler: Oküler, gebelik, körlük. 2016; 25(1):1-13 Archives Medical Review Journal Arşiv Kaynak Tarama Dergisi .
    [Show full text]