Phacochoerus Aethiopicus and Common Warthog Phacochoerus Africanus in the Horn of Africa

Total Page:16

File Type:pdf, Size:1020Kb

Phacochoerus Aethiopicus and Common Warthog Phacochoerus Africanus in the Horn of Africa BIOGEOGRAPHY AND CONSERVATION OF DESERT WARTHOG PHACOCHOERUS AETHIOPICUS AND COMMON WARTHOG PHACOCHOERUS AFRICANUS IN THE HORN OF AFRICA Yvonne A. de Jong1, Jean-Pierre d’Huart², Thomas M. Butynski1 1Lolldaiga Hills Research Programme & Eastern Africa Primate Diversity and Conservation Program, Nanyuki (Kenya), [email protected] & [email protected] 2 Conservation Consultancy Services sprl, Hamme-Mille (Belgium), [email protected] Introduction Results Two species of warthog Phacochoerus F. Cuvier, 1826 are currently recognized: desert warthog (DWH) DWH occurs east of the Eastern Rift Valley (Rift), except in NE Ethiopia and NW Somalia where present on the Phacochoerus aethiopicus (Pallas, 1766) and common warthog (CWH) Phacochoerus africanus (Gmelin, floor of the Rift. Known ‘Extent of Occurrence’ of DWH is ca. 330,000 km² (15% of the land surface of Ethiopia, 1788). Phenotypically and genetically distinct, they belong to two deeply divergent monophyletic lineages that Somalia, Kenya). Known ‘Extent of Occurrence’ of CWH is ca. 705,400 km² (30% of the land surface of these originated during the early Pliocene (ca. 4.5 mya; Randi et al. 2002, d'Huart & Grubb 2005). three countries). There are seven documented, widespread, areas of sympatry between DWH and CWH (total ca. 19,700 km²). DWH occurs 0–1,690 m asl, but is most common <1,000 m asl. Altitudinal range of CWH is 0–3,500 m asl. DWH is not reported where mean annual rainfall is <100 mm (most records 200–800 mm), whereas CWH survives in areas with 50 mm mean annual rainfall. Table. Known environmental limits of desert warthog and common warthog in the Horn of Africa. (De Jong et al. in prep.). Species Altitude Mean annual Mean annual Minimum Number of (m asl) rainfall (mm) temperature (°C) temperature (°C) ecoregions Common 0–3,500 50–1,700 5–35 -15 13 warthog Desert warthog 0–1,690 100–850 20–32 11 7 Adult male desert warthog • Ear tips bent backwards in all ages of both sexes. DWH is confined to xeric environments (typically bushland on sandy/rocky soil), and appears to require a Adult male common warthog • Adult male with a hook-shaped wart under constant source of drinking water. Although CWH lives in a wide range of habitats (typically where drinking water • Ear tips erect in all ages of both sexes. each eye. is always available in woodland/bushland/grassland mosaics on alluvial soil), including sub-desert where drinking • Adult male with a cone-shaped wart under each • Hind quarters relatively slender in adults. water is sometimes absent for several months. In the HoA, DWH is present in seven ecoregions and CWH is eye. present in 13 ecoregions, six of which are shared with DWH. DWH occurs mainly in the ‘Somali Acacia- • Hind quarters relatively well-muscled in adults. Commiphora Deciduous Bushlands and Thickets Ecoregion’. Adult female desert warthog, Samburu National Reserve, central Kenya. Photographs of DWH and CWH are published on the Photographic Map available at: http://wildsolutions.nl/photomaps/phacochoerus/ Conclusions The environmental limits (altitude, rainfall, temperature) for DWH are much narrower than for CWH. As such, the geographic range of DWH in the HoA is considerably smaller than for CWH. The Rift appears to be a geographical barrier for DWH over all but the northern-most part of its range where the Rift is lowest (i.e., enters the Red Sea). The high altitudes of the Rift Escarpment are probably to be too cold and wet for DWH. DWH appears less adaptable than CWH, which is relatively ubiquitous, eurytopic and resilient. Skull lower side Skull lower side Mandible Conservation Top: common warthog Top: desert warthog Top: desert warthog Both DWH and CWH are listed as ‘Least Concern’ on the IUCN Red List of Threatened Species (De Jong et Bottom: desert warthog Bottom: common warthog Bottom: common warthog al. 2016a, b). Although the abundance and geographic ranges of DWH and CWH are in decline, both species remain widespread and locally abundant, and both have a high reproductive rate. DWH and CWH are, Note the thickened zygomatic Note the lack of upper incisors in Note: Lower incisors absent or however, absent within large parts of their geographic ranges. Main threats are human-caused habitat arches and larger ‘sphenoidal pits’ desert warthog. rudimentary in desert warthog. degradation, loss and fragmentation, competition with livestock for food and water, hunting by humans, and in desert warthog. Typically three pairs of lower disease. The driver of these threats is the rapidly growing human population in the HoA (doubles every 20–25 incisors in common warthog. years). DWH is present in at least 12 protected areas. CWH is present in numerous protected areas in the HoA. Biogeography While CWH is distributed throughout much of sub-Saharan Africa and relatively well-studied, the distribution, Literature abundance, ecology, behaviour, and conservation status of DWH remain poorly known. The Horn of Africa (i.e., De Jong, Y.A., Butynski, T.M. & d'Huart, J.-P. 2016a. Phacochoerus aethiopicus. The IUCN Red List of Djibouti, Eritrea, Ethiopia, Somalia, Kenya; HoA) supports three of the four subspecies of CWH. DWH is endemic Threatened Species 2016. Website: http://www.iucnredlist.org/details/41767/0. to Ethiopia, Somalia, and Kenya. De Jong, Y.A., Cumming, D., d'Huart, J.-P. & Butynski, T.M. 2016b. Phacochoerus africanus. The IUCN Red List of Threatened Species 2016. Website: http://www.iucnredlist.org/details/41768/0. De Jong, Y.A., d'Huart, J.P. & Butynski, T.M. In prep. Biogeography of the desert warthog Phacochoerus Methods aethiopicus (Pallas, 1766) and common warthog Phacochoerus africanus (Gmelin, 1788) in the Horn of Africa. Spatial data were collected during field surveys in Kenya, from literature, museum collections, and colleagues, d’Huart, J.-P. & Grubb, P. 2005. A photographic guide to the differences between the common warthog naturalists, local experts, and online resources. Locality records are stored in a Microsoft Excel database (Phacochoerus africanus) and the desert warthog (Ph. aethiopicus). Suiform Soundings 5(2): 4–8. ('WarthogBase'). As of May 2018, WarthogBase held 205 entries of CWH (6 from Djibouti; Eritrea 9; Ethiopia 50; Randi, E., d’Huart, J.-P., Lucchini, V. & Aman, R. 2002. Evidence of two genetically deeply divergent species Kenya 133; Somalia 7), 188 entries of DWH (Ethiopia 7; Kenya 136; Somalia 45) and 50 entries of unidentified of warthog Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in East Africa. Mammalian warthog species. Biology 67: 91–96. ‘Extent of Occurrence’ of desert warthog and common warthog in the Horn Distribution of desert warthog and common warthog in the Horn of Africa Distribution of desert warthog and common warthog in the Horn of of Africa (De Jong et al. in prep.). relative to altitude above sea level (De Jong et al. in prep.). Africa relative to mean annual rainfall (De Jong et al. in prep.)..
Recommended publications
  • Distribution, Utilization and Management of the Extra-Limital Common Warthog (Phacochoerus Africanus) in South Africa
    Distribution, utilization and management of the extra-limital common warthog (Phacochoerus africanus) in South Africa Monlee Swanepoel Dissertation presented for the degree of Doctor of Philosophy (Conservation Ecology and Entomology) in the Faculty of AgriSciences, Stellenbosch University Promoter: Prof Louwrens C. Hoffman Co-Promoter: Dr. Alison J. Leslie March 2016 Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained herein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously submitted it, in its entirety or in part, for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Acknowledgements I wish to express my sincere gratitude and appreciation to the following persons and institutions: My supervisors, Dr. Alison J. Leslie and Prof. Louwrens C. Hoffman for invaluable assistance, expertise, contribution and support and patience. The Meat Science team of Department of Animal Sciences at Stellenbosch University, including the technical and support staff for their extensive assistance, support and encouragement Academics, staff and colleagues of this institution and others for their contribution and assistance. An especial thank you to Prof. Martin Kidd, Marieta van der Rijst, Nina Muller, Erika Moelich, Lisa Uys, Gail Jordaan, Greta Geldenhuys, Michael Mlambo, Janine Booyse, Cheryl Muller, John Achilles, Dr.
    [Show full text]
  • Multiscale Perspectives of Species Richness in East Africa
    Chapter 2 Chapter 2 Analysis of the relation between ungulate species richness in East Africa and climatic and remotely sensed productivity indices Mohammed Y Said1,2,∗, Andrew K Skidmore2, Jan de Leeuw2, Hesbon M Aligula1 Lalit Kumar 2 and Herbert H T Prins3 1Department of Resource Surveys and Remote Sensing (DRSRS), P.O. Box 47146 Nairobi, Kenya 2International Institute for Geo-information Science and Earth Observation (ITC), P.O. Box 6, 7500 AA Enschede, The Netherlands 3Tropical Nature Conservation and Vertebrate Ecology Group, Wageningen University, Bornsesteeg 69, 6708 PD Wageningen, The Netherlands Abstract The aim of the study was to evaluate whether climatic or remotely sensed indices are a better predictor of ungulate species richness. Our hypothesis is that the remotely sensed index the normalized difference vegetation index (NDVI) integrates the influence of climatic and environmental factors, it should be a better predictor of species richness than climatic variables. The study was conducted in East Africa, which has high ungulate species diversity. Out of 95 ungulate species found in Africa, 55 are found within this sub-region. The vegetation is highly heterogeneous, with great variability in productivity that is influenced by the spatial and seasonal distribution of climatic variables, including precipitation and temperature. Species richness was regressed against each environmental variable, using linear, polynomial, logarithmic and exponential models. A test of the equality of two population regression coefficients was used to compare the models. The results show that the strongest correlates of species richness were rainfall and NDVI, with 69% and 55% of the variance explained. A unimodal pattern was exhibited for ungulate species richness with both rainfall and NDVI.
    [Show full text]
  • Beatragus Hunteri) in Arawale National Reserve, Northeastern, Kenya
    The population size, abundance and distribution of the Critically Endangered Hirola Antelope (Beatragus hunteri) in Arawale National Reserve, Northeastern, Kenya. Francis Kamau Muthoni Terra Nuova, Transboundary Environmental Project, P.O. Box 74916, Nairobi, Kenya Email: [email protected] 1.0. Abstract. This paper outlines the spatial distribution, population size, habitat preferences and factors causing the decline of Hirola antelope in Arawale National Reserve (ANR) in Garissa and Ijara districts, north eastern Kenya. The reserve covers an area of 540Km2. The objectives of the study were to gather baseline information on hirola distribution, population size habitat preferences and human activities impacting on its existence. A sampling method using line transect count was used to collect data used to estimate the distribution of biological populations (Norton-Griffiths, 1978). Community scouts collected data using Global Positioning Systems (GPS) and recorded on standard datasheets for 12 months. Transect walks were done from 6.00Am to 10.00Am every 5th day of the month. The data was entered into a geo-database and analysed using Arcmap, Ms Excel and Access. The results indicate that the population of hirola in Arawale National Reserve were 69 individuals comprising only 6% of the total population in the natural geographic range of hirola estimated to be 1,167 individuals. It also revealed that hirola prefer open bushes and grasslands. The decline of the Hirola on its natural range is due to a combination of factors, including, habitat loss and degradation, competition with livestock, poaching and drought. Key words: Hirola Antelope Beatragus hunteri, GIS, Endangered Species 2.0. Introduction. The Hirola antelope (Beatragus hunteri) is a “Critically Endangered” species endemic to a small area in Southeast Kenya and Southwest Somalia.
    [Show full text]
  • A National Park in Northern Rhodesia 15
    A National Park in Northern Rhodesia 15 A NATIONAL PARK IN NORTHERN RHODESIA By a Proclamation dated 20th April, 1950, the Governor of Northern Rhodesia has established a National Park, to be known as the Kafue National Park. This new park covers some 8,650 square miles roughly in the central Kafue basin, between latitudes 14° and 16° 40' S. It contains a wide range of country from the comparatively drv sandy lands of the south to the big rivers, swamps, and heavy timber of the northern section. The magnificent Kafue River dominates the whole central portion, adding scenic beauty to the attraction of wild life. The park contains representatives of most species of the fauna of Northern Rhodesia. Primates are represented by the Rhodesian Baboon, the Vervet Monkey, and the Greater and Lesser Night-Apes. There are Elephant and Black Rhinoceros, Buffalo, Lion, Leopard, Cheetah, and numbers of the smaller carnivora. Antelope include Eland, Sable, Roan, Liehtenstein's Hartebeest, Blue Wildebeest, Kudu, Defassa Waterbuck, Bushbuck, Reedbuck, Puku, Impala, Oribi, Common, Blue, and Yellow-backed Duikers, Klipspringer, and Sharpe's Stein- buck. There are Red Lechwe and Sitatunga in the Busango Swamp in the north, Hippopotamus in numbers in the Kafue and its larger tributaries. Zebra are common, Warthog and Bushpig everywhere. Birds are abundant. The park is uninhabited apart from certain small settle- ments, on a limited section of the Kafue River, belonging to the indigenous Africans under their tribal chief Kayingu. These people must be accorded their traditional local hunting rights, but such will affect only a small fraction of the whole vast wild area.
    [Show full text]
  • Safari Drive Bingo
    Safari Drive Bingo myfreebingocards.com Play Print off your bingo cards and start playing! If you can't get to a printer you can also play online - share this link with your friends: myfreebingocards.com/M/VrQeb and they can play on their mobiles or tablets. On the next page is a sheet for the bingo caller that contains of all the words that appear on the cards. To call the bingo you can cut the sheet up and pull the words out of a hat. Share Pin these bingo cards on Pinterest, share on Facebook, or post this link: myfreebingocards.com/S/VrQeb Edit and Create To add more words or make changes to this set of bingo cards go to myfreebingocards.com/E/VrQeb Go to myfreebingocards.com/bingo-card-generator to create a new set of bingo cards. Have Fun! If you have any feedback or suggestions about the bingo card generator, drop me an email on [email protected]. Bingo Caller's Card Cheetah Elephant Lion Buffalo Ostrich Birds Insects Zebra Giraffe Hyena Wild Dog Leopard Impala Hippo Gazelle Rhino Monkey Other Butterfly Antelope Wildebeest Mongoose Snake Jackal Warthog Snake Porcupine Squirrel myfreebingocards.com Safari Drive Bingo Safari Drive Bingo Mongoose Wildebeest Impala Zebra Porcupine Other Birds Giraffe FREE Porcupine Rhino Hippo Wild Dog Jackal Monkey Snake SPACE Monkey Elephant Squirrel Hyena Squirrel Insects Antelope Hyena FREE Insects Ostrich Birds Warthog Wildebeest Hippo Butterfly SPACE myfreebingocards.com myfreebingocards.com Safari Drive Bingo Safari Drive Bingo Hippo Other Snake Gazelle Birds Other Monkey Gazelle FREE
    [Show full text]
  • Site Report: Kafa Biosphere Reserve and Adjacent Protected Areas
    Site report: Kafa Biosphere Reserve and adjacent Protected Areas Part of the NABU / Zoo Leipzig Project ‘Field research and genetic mapping of large carnivores in Ethiopia’ Hans Bauer, Alemayehu Acha, Siraj Hussein and Claudio Sillero-Zubiri Addis Ababa, May 2016 Contents Implementing institutions and contact persons: .......................................................................................... 3 Preamble ....................................................................................................................................................... 4 Introduction .................................................................................................................................................. 4 Objective ....................................................................................................................................................... 5 Description of the study site ......................................................................................................................... 5 Kafa Biosphere Reserve ............................................................................................................................ 5 Chebera Churchura NP .............................................................................................................................. 5 Omo NP and the adjacent Tama Reserve and Mago NP .......................................................................... 6 Methodology ................................................................................................................................................
    [Show full text]
  • Profile of Back Bacon Produced from the Common Warthog
    foods Article Profile of Back Bacon Produced From the Common Warthog Louwrens C. Hoffman 1,2,* , Monlee Rudman 1,3 and Alison J. Leslie 3 1 Department of Animal Sciences, Faculty AgriSciences, Mike de Vries Building, Private Bag X1, Matieland, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] 2 Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia 3 Department of Conservation Ecology and Entomology, Faculty AgriSciences, JS Marais Building, Private Bag X1, Matieland, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] * Correspondence: Louwrens.hoff[email protected]; Tel.: +61-4-1798-4547 Received: 7 April 2020; Accepted: 9 May 2020; Published: 15 May 2020 Abstract: The common warthog (Phacochoerus africanus) has historically been hunted and consumed by rural communities throughout its distribution range in Africa. This study aims to develop a processed product from warthog meat in the form of back bacon (Longissimus thoracis et lumborum) as a healthy alternative meat product and to determine its chemical and sensory characteristics derived from adult and juvenile boars and sows. The highest scored attributes included typical bacon and smoky aroma and flavor, and salty flavor, as well as tenderness and juiciness. Neither sex nor age influenced the bacon’s chemical composition; the bacon was high in protein (~29%) and low in total fat (<2%). Palmitic (C16:0), stearic (C18:0), linoleic (C18:2!6), oleic (C18:1!9c), and arachidonic (C20:4!6) were the dominant fatty acids. There was an interaction between sex and age for the PUFA:SFA ratio (p = 0.01).
    [Show full text]
  • The Effect of Species Associations on the Diversity and Coexistence of African Ungulates
    The effect of species associations on the diversity and coexistence of African ungulates. By Nancy Barker For Professor Kolasa BIO306H1 – Tropical Ecology University of Toronto Wednesday, August 24th, 2005 Abstract: The effects of species associations on species diversity and coexistence were investigated in East Africa. The frequency and group sizes of African ungulates were observed and analyzed to determine for differences in species associations based on their density and distribution, as well as their associations with other species. Associations between species were determined to be nonrandom and seen to affect the demographics of associating herds. Such associations mirrored in other studies were shown to be the result of interspecific competition, habitat preferences and predation pressure which increases the potential for coexistence between species. This suggests a potentially important role in the regulation of species diversity by ecological dynamics in species rich communities. In the face of today’s biodiversity crisis, such understanding of species associations and how they are regulated may have huge implications for conservation. Introduction: known with the famous Darwin’s finches of the Galapagos Islands. However, there are many other Sympatric coexistence of organisms within a guilds with what seems to be extensive community poses several questions for ecologists. overlapping in their resources, such as the grazing High levels of species association occur with high herds in Africa which eat common and widely species packing, as is seen within the Selous game dispersed foods. Sinclair (Sinclair, 1979 as cited in reserve of Tanzania in east Africa. Sinclair (1985) Sinclair, 1985) has found that this seemingly notes that mixed herds are frequently seen in east extensive overlap among these herds have also Africa and Connor and Simberloff (1979) have undergone niche separation.
    [Show full text]
  • The State of Hunting in Ethiopia
    African Indaba e-Newsletter Volume 9, Number 4 Page 1 For the s ustainable use of wildlife Conseil International de la Chasse et de la Conservation du Gibier AFRICAN INDABA Internationaler Rat zur Erhaltung des Wildes und der Jagd International Council for Game and Wildlife Conservation Dedicated to the People and Wildlife of Africa Volume 9, Issue No 4 eNewsletter July 2011 Dear Reader, capital expenditure. David Mabunda, CEO of SANParks said not so long ago that “SANParks needs to find sustainable methods to The northeastern corner of Africa is one focal areas of this fund the operations and protection of the entire national parks issue: Peter Flack’s first hand report from a recent trip to Ethiopia system and hence SANParks views responsible tourism as a (Article 2) makes grim reading and Fred Pearce’s account on the conservation strategy.” Maybe it is time to evaluate conservation agribusiness boom in Ethiopia does not provide comfort either hunting as one more option. SANParks could produce sustainable (Article 10). The emerging nation of South Sudan faces serious NET PROFITS in the region of 40 to 50 million Rand annually from challenges (Article 6). Tanzania’s President Kikwete has now very limited and strictly controlled hunting without compromising signaled that instead of the controversial Trans-Serengeti the SANParks Conservation Strategy. The National Treasury could Highway, some unpaved roads will connect villages to the national apply the subsidies paid to SANParks in the past to service road network and a southern bypass of the park is envisaged delivery on many fronts. My proposal will be challenged with all (News from Africa).
    [Show full text]
  • Transcript (PDF)
    [Music plays] [NARRATOR:] Welcome to HHMI's 2015 Holiday Lectures on Science. This year's lectures, Patterns and Processes in Ecology, will be given by two leaders in ecological research, Dr. Robert Pringle and Dr. Corina Tarnita of Princeton University. The sixth lecture is titled, Conserving and Restoring Ecosystems. And now, Dr. Robert Pringle. [Applause] [PRINGLE:] All right, so it's the last lecture before lunch, and you guys are all still with us and asking the most amazing questions, so we love you for that. And this lecture is, in many ways, to me the most important. But unfortunately, I only have really 15 minutes to give it. And it's important because it's about taking-- you know, I hope we've been able to convince you, Corina and I, over the past-- over the course of the morning, that by coupling kind of creative problem-solving approaches, new technologies, mathematical models, and experimental tests, we can understand a lot about how ecosystems actually work. And that's a new thing in ecology, which is a relatively young science. But this lecture is about how can we take that kind of knowledge and apply it to the restoration of a severely degraded ecosystem that we've been talking about all morning, Gorongosa National Park. So the collapse of large wildlife is not unique to Gorongosa or to any other system. So here's a heat map showing where there are the most species of large mammals. Not surprisingly, that map concentrated in Africa, eastern and southern Africa. And here are species that are threatened.
    [Show full text]
  • Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease
    fgene-10-00402 April 30, 2019 Time: 16:53 # 1 REVIEW published: 03 May 2019 doi: 10.3389/fgene.2019.00402 The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease Christopher L. Netherton1*, Samuel Connell1, Camilla T. O. Benfield2 and Linda K. Dixon1* 1 The Pirbright Institute, Woking, United Kingdom, 2 Royal Veterinary College, London, United Kingdom Pathogen transmission from wildlife hosts to genetically distinct species is a major driver of disease emergence. African swine fever virus (ASFV) persists in sub-Saharan Africa Edited by: through a sylvatic cycle between warthogs and soft ticks that infest their burrows. The Andrea B. Doeschl-Wilson, virus does not cause disease in these animals, however transmission of the virus to Roslin Institute, University domestic pigs or wild boar causes a hemorrhagic fever that is invariably fatal. ASFV of Edinburgh, United Kingdom transmits readily between domestic pigs and causes economic hardship in areas where Reviewed by: Filippo Biscarini, it is endemic. The virus is also a significant transboundary pathogen that has become Italian National Research established in Eastern Europe, and has recently appeared in China increasing the risk of Council (CNR), Italy Christine Tait-Burkard, an introduction of the disease to other pig producing centers. Although a DNA genome University of Edinburgh, mitigates against rapid adaptation of the virus to new hosts, extended epidemics of United Kingdom African swine fever (ASF) can lead to the emergence of viruses with reduced virulence. *Correspondence: Attenuation in the field leads to large deletions of genetic material encoding genes Christopher L.
    [Show full text]
  • Mammal Species Richness at a Catena and Nearby Waterholes During a Drought, Kruger National Park, South Africa
    diversity Article Mammal Species Richness at a Catena and Nearby Waterholes during a Drought, Kruger National Park, South Africa Beanélri B. Janecke Animal, Wildlife & Grassland Sciences, University of the Free State, 205 Nelson Mandela Road, Park West, Bloemfontein 9301, South Africa; [email protected]; Tel.: +27-51-401-9030 Abstract: Catenas are undulating hillslopes on a granite geology characterised by different soil types that create an environmental gradient from crest to bottom. The main aim was to determine mammal species (>mongoose) present on one catenal slope and its waterholes and group them by feeding guild and body size. Species richness was highest at waterholes (21 species), followed by midslope (19) and sodic patch (16) on the catena. Small differences observed in species presence between zones and waterholes and between survey periods were not significant (p = 0.5267 and p = 0.9139). In total, 33 species were observed with camera traps: 18 herbivore species, 10 carnivores, two insectivores and three omnivores. Eight small mammal species, two dwarf antelopes, 11 medium, six large and six mega-sized mammals were observed. Some species might not have been recorded because of drought, seasonal movement or because they travelled outside the view of cameras. Mammal presence is determined by food availability and accessibility, space, competition, distance to water, habitat preferences, predators, body size, social behaviour, bound to territories, etc. The variety in body size and feeding guilds possibly indicates a functioning catenal ecosystem. This knowledge can be beneficial in monitoring and conservation of species in the park. Keywords: catena ecosystem; ephemeral mud wallows; habitat use; mammal variety; Skukuza area; Citation: Janecke, B.B.
    [Show full text]