Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage

Total Page:16

File Type:pdf, Size:1020Kb

Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage Zootaxa 2995: 64–68 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901: Conservation of usage by Reversal of Precedence with Bergia Duchassaing & Michelotti, 1860, and Bergiidae Verrill, 1869 (Cnidaria: Anthozoa: Hexacorallia) MARTYN E. Y. LOW1 & JAMES DAVIS REIMER2,3 1Department of Marine and Environmental Sciences, Graduate School of Engineering and Science, University of the Ryukyus, 1 Sen- baru, Nishihara, Okinawa 903-0213, Japan. E-mail: [email protected] 2Molecular Invertebrate Systematics and Ecology Laboratory, Rising Star Program, Trans-disciplinary Organization for Subtropical Island Studies, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kana- gawa 237-0061, Japan. E-mail: [email protected] 3Corresponding author Abstract The names Bergia Duchassaing & Michelotti, 1860, and Bergiidae Verrill, 1869, are respectively, senior subjective syn- onyms of Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901. The junior synonyms Parazoanthus and Parazoanthidae are in current and widespread use. In the interest of nomenclatural stability, we enact Articles 23.9.1 and 23.9.2 to reverse precedence of these names, thereby making Parazoanthus and Parazoanthidae nomi- na protecta, and Bergia and Bergiidae nomina oblita. Key words: Zoantharia, Zoanthidea, Article 23.9.1, Article 23.9.2, ICZN, nomenclature The family Parazoanthidae Delage & Hérouard, 1901, and its type genus Parazoanthus Haddon & Shackleton, 1891, are a group of zoanthids frequently epizoic on sponges or other benthic organisms (see Reimer & Sinniger 2010: 253). The genus Parazoanthus was established by Haddon & Shackleton (1891a: 633) with the type species Palythoa axinellae Schmidt, 1862, by original designation. In addition to the type species, at least nine other species are currently included in the genus (Appeltans et al. 2011): Parazoanthus anguicomus (Norman, 1869), Parazoanthus capensis Carlgren, 1938, Parazoanthus catenu- laris (Duchassaing & Michelotti, 1860), Parazoanthus darwini Reimer & Fujii, 2010, Parazoanthus dichroicus Haddon & Shackleton, 1891b, Parazoanthus elongatus McMurrich, 1904, Parazoanthus parasiticus (Duchassaing & Michelotti, 1860), Parazoanthus puertoricense West, 1979, and Parazoanthus swiftii (Duchassaing & Michel- otti, 1860) (Sinniger et al. 2010; Swain 2009). The family Parazoanthidae was established by Delage & Hérouard (1901: 665), with only the type genus included. Parazoanthidae now contains five genera (see Sinniger et al. 2010: 58). The family Parazoanthidae and the genus Parazoanthus are still undergoing revision (discussed in Sinniger et al. 2010), and the exact number of species in Parazoanthus is still a matter of debate. The genus Bergia was established by Duchassaing & Michelotti (1860: 54) for two new species, Bergia catenularis and Bergia vialactea. The family Bergiidae was established by Verrill (1869: 494), with the inclusion of only the type genus. Duerden (1903: 496) considered the two species of Bergia to be conspecific, using Bergia catenularis in favour of Bergia vialactea, and transferred Bergia catenularis to the genus Parazoanthus Haddon & Shackleton, 1891. The names Bergia Duchassaing & Michelotti, 1860, and Bergiidae Verrill, 1869, are thus respec- tively, senior subjective synonyms of Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901. 64 Accepted by M. Daly: 29 Jul. 2011; published: 15 Aug. 2011 The family Parazoanthidae and the genus Parazoanthus are in current and widespread use, with new genera and species of Parazoanthus having been recently described (e.g. Reimer & Fujii 2010; Sinniger et al. 2010). How- ever, the Principle of Priority (Article 23 of the International Code of Zoological Nomenclature, hereafter the Code, ICZN 1999: 24) requires that the oldest available name for the taxon under consideration must be used. Replacing the names Parazoanthus and Parazoanthidae with Bergia and Bergiidae, respectively, is not in the interest of nomenclatural stability. To mediate the Principle of Priority, Article 23.9.1 of the Code (ICZN 1999: 27) allows for a reversal of precedence of a junior synonym when the senior synonym has not been used as a valid name after 1899 (Article 23.9.1.1) and the junior synonym “has been used for a particular taxon, as its presumed valid name, in at least 25 works, published by at least 10 authors in the immediately preceding 50 years and encom- passing a span of not less than 10 years” (Article 23.9.1.2). Since 1899, the name Bergia has been used in a small number of publications. Duerden (1900: 205) used the name twice; firstly as it was being used by workers at that point in time (without actually considering it valid), and secondly to note that Bergia was undoubtedly synonymous with Paraozoanthus. In Duerden (1903: 495, 496), the two species of Bergia are synonymized (with doubt regarding the family name Bergiidae being raised), and the spe- cies is transferred to Parazoanthus, again clearly showing that Duerden did not consider Bergia to be valid. Bergia was also mentioned in a footnote in Delage & Hérouard (1901:667), but this genus was described as “impossibles a classer” [= “impossible to classify”], and again this is not a clear usage of Bergia as a valid name. Pax (1910: 299), in a list of species of Parazoathus species, which he considered to be valid, listed “P. catenularis (Duch. & Mich.)” as a valid species, and briefly discussed that this species was originally described in the genus Bergia, with no dis- cussion about the latter’s validity. Finally, Volpi & Benvenuti (2003:66) reported on the collection of Duchassaing and Michelotti, and noted that a syntype of Bergia catenularis is extant. However, the same authors specifically stated that they were using the “original names”, with no effort being made to ascertain the valid names for the material (Volpi & Benvenuti 2003: 53). As Ng & Low (2010:37, 38) have argued, “valid usage” of a name must be unambiguous and show clearly that the author both considered it the correct name to be used and adopted the name. Duerden (1900, 1903) and Delage & Hérouard (1901) did not use Bergia and Bergiidae as valid names, and Volpi & Benvenuti (2003) simply reported on a specimen, and made no statement on the validity of Bergia. Thus, the names Bergia Duchassaing & Michelotti, 1860, and Bergiidae Verrill, 1869, have not been used as the valid names for the taxa they denote since 1899 (thus fulfilling Article 23.9.1.1 of the Code). In the Appendix, we list 30 publications, by 69 authors in the past 33 years in which the names Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901, have been used as valid names for the taxa they denote (thus fulfilling Article 23.9.1.2 of the Code). As both requirements of Article 23.9.1 are met, and in accordance with Article 23.9.2, the names Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901, are considered valid names and take precedence over Bergia Duchassaing & Michelotti, 1860, and Bergiidae Verrill, 1869. Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901, now become nomina protecta and Bergia Duch- assaing and Michelotti, 1860, and Bergiidae Verrill, 1869, nomina oblita. If future research demonstrates that Parazoanthus catenularis is not referable to the genus Parazoanthus, the genus name Bergia and the family name Bergiidae remain available as outlined in Article 23.9.2 of the Code (ICZN 1999: 28) that allows “in the case of subjective synonymy, whenever the names are not regarded as syn- onyms the older name may be used as valid”. Acknowledgments Carey Ashworth (University of the Ryukyus, Japan) assisted in translating literature. The senior author was sup- ported in part by the Rising Star Program at the University of the Ryukyus. References Appeltans, W., Bouchet, P., Boxshall, G.A., Fauchald, K., Gordon, D.P., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., CONSERVATION OF THE NAME PARAZOANTHUS Zootaxa 2995 © 2011 Magnolia Press · 65 Stöhr, S., Walter, T.C. & Costello, M. (eds.) (2011). World Register of Marine Species. Accessed at http://www.marinespe- cies.org on 2011-07-14. Carlgren, O. (1938) South African Actiniaria and Zoantharia. Kungliga Svenska vetenskapsakademiens handlingar, ser. 3, 17 (3), 1–148, figs. 1–83, pls. 1–3. Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodriguez, E., Romano, S.L. & Stake, J.L. (2007) The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa, 1668, 127–182. Delage, Y. & Hérouard, E. (1901) Zoanthidés. – Zoanthidae. Pp. 654–667, figs. 907–929, pls. 65, 66. In: Traité de Zoologie concrète. Tome II – 2e Partie. Les Coelentérés. C. Reinwald, Paris, x + [1] + 848 pp., figs. 1–1102, pls. 1–72. Duchassaing, P. de F. & Michelotti, J. (1860) Mémoire sur les Coralliaires des Antilles. Imprimerie Royale, Turin, 112 pp., pls. 1–11. [Note: This is separate of a publication with identical title and text in the Memorie della Reale Accademia delle Sci- enze di Torino, ser. 2, vol. 19, pp. 279–365, that appeared in 1861] Duerden, J.E. (1900) Jamaican Actiniaria. Part II – Stichodactylinae and Zoantheae. Scientific Transactions of the Royal Dublin Society, ser. 2, 7(6), 133–220, pls. 10–15. Duerden, J.E. (1903) West Indian sponge-incrusting [sic] actinians. Bulletin of the American Museum of Natural History, 19 (18), 495–503, pls. 44–47. Haddon, A.C. & Shackleton, A.M. (1891a) The Zoantheae. In: A revision of the British Actiniae. Part II. Reports on the zoo- logical collections made in the Torres Straits by A. C. Haddon, 1888–1889. Scientific Transactions of the Royal Dublin Society, ser. 2, 4(12), 609–672, pls. 58–60. [Published November 1891] Haddon, A.C.
Recommended publications
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • Deepseacorals.Pdf
    Protection of Deep-Sea Corals from Physical Damage by Fishing Gear under the MSA Deep Sea Coral Discretionary Authority Purpose The National Oceanic and Atmospheric Administration (NOAA) is a steward of the nation’s living marine resources. This document will assist NOAA offices and the regional fishery management councils (Councils)1 when developing protective measures for deep-sea corals under section 303(b)(2)(B) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA).2 Section 303(b)(2) provides that any fishery management plan (FMP) which is prepared by any Council or the Secretary, with respect to any fishery, may: A) designate zones where, and periods when, fishing shall be limited, or shall not be permitted, or shall be permitted only by specified types of fishing vessels or with specified types and quantities of fishing gear; B) designate such zones in areas where deep sea corals are identified under section 408 [the Deep Sea Coral Research and Technology Program], to protect deep sea corals from physical damage from fishing gear or to prevent loss or damage to such fishing gear from interactions with deep sea corals, after considering long-term sustainable uses of fishery resources in such areas. 16 U.S.C. § 1853(b)(2)(A)-(B). We encourage use of this discretionary authority to advance the agency’s and Councils’ conservation objectives. NOAA’s Strategic Plan for Deep-Sea Coral and Sponge Ecosystems seeks to ensure that fisheries that may interact with known and likely deep-sea coral ecosystems are identified and monitored and that such ecosystems are protected from the impacts of fishing gear (see Figure 1).3 This document is consistent with those policy goals.
    [Show full text]
  • Ica Nature Park (Adriatic Sea, Croatia)
    NAT. CROAT. VOL. 16 No 4 233¿266 ZAGREB December 31, 2007 original scientific paper / izvorni znanstveni rad ANTHOZOAN FAUNA OF TELA[]ICA NATURE PARK (ADRIATIC SEA, CROATIA) PETAR KRU@I] Faculty of Science, Department of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia ([email protected]) Kru`i}, P.: Anthozoan fauna of Tela{}ica Nature Park (Adriatic Sea, Croatia). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Sixty-five anthozoan species were recorded and collected in the area of Tela{}ica Nature Park during surveys from 1999 to 2006. General and ecological data are presented for each species, as well as distribution and local abundance. The recorded species account for about 56% of the antho- zoans known in the Adriatic Sea, and for about 38% of the anthozoans known in the Mediterra- nean Sea. From Tela{}ica Nature Park, 16 species are considered to be Mediterranean endemics. The heterogeneity of the substrates and benthic communities in the bay and cliffs is considerable in Tela{}ica Nature Park; anthozoans are present on most of the different kinds of substrates and in a wide range of benthic communities. Key words: marine fauna, Anthozoa, Tela{}ica Nature Park, Adriatic Sea. Kru`i}, P.: Fauna koralja Parka prirode Tela{}ica (Jadransko more, Hrvatska). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Prilikom istra`ivanja podmorskog dijela Parka prirode Tela{}ica u razdoblju od 1999. do 2006. godine zabilje`eno je i sakupljeno 65 vrsta koralja. Za svaku vrstu izneseni su op}i i ekolo{ki podaci, te su zabilje`eni nalazi i lokalna brojnost.
    [Show full text]
  • Metabolomic Profiling Reveals Deep Chemical Divergence Between Two
    OPEN Metabolomic profiling reveals deep SUBJECT AREAS: chemical divergence between two METABOLOMICS CHEMICAL ECOLOGY morphotypes of the zoanthid BIODIVERSITY MASS SPECTROMETRY Parazoanthus axinellae Nadja Cachet1, Gre´gory Genta-Jouve1,2, Julijana Ivanisevic1,3, Pierre Chevaldonne´3, Fre´de´ric Sinniger4,5, Received Ge´rald Culioli1,6, Thierry Pe´rez3 & Olivier P. Thomas1,3 10 October 2014 Accepted 1Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Universite´ de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France, 8 January 2015 2Laboratoire de Pharmacognosie et de Chimie des Substances Naturelles, UMR CNRS 8638 COMETE, Universite´ Paris Descartes, 4 Avenue de l’Observatoire 75006 Paris, France, 3Institut Me´diterrane´en de Biodiversite´ et d’Ecologie Marine et Continentale, UMR Published 7263 CNRS, IRD, Aix Marseille Universite´, Avignon Universite´, Station Marine d’Endoume, Rue Batterie des Lions, 13007 6 February 2015 Marseille, France, 4Japan Agency for Marine-Earth Science and Technology, 224-3 Aza-Toyohara, Nago City, Okinawa 905- 2172, Japan, 5Tropical Biosphere Reseach Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan, 6MAPIEM, EA 4323 Universite´ de Toulon, 83957 La Garde, France. Correspondence and requests for materials Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and should be addressed to genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order T.P. (thierry.perez@ Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. imbe.fr) or O.P.T. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow (olivier.thomas@unice. waters of the Mediterranean Sea and the NE Atlantic Ocean.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • Halogenated Tyrosine Derivatives from the Tropical Eastern Pacific
    Article Cite This: J. Nat. Prod. 2019, 82, 1354−1360 pubs.acs.org/jnp Halogenated Tyrosine Derivatives from the Tropical Eastern Pacific Zoantharians Antipathozoanthus hickmani and Parazoanthus darwini † ‡ † § ‡ ⊥ ∥ Paul O. Guillen, , Karla B. Jaramillo, , Laurence Jennings, Gregorý Genta-Jouve, , # # # † Mercedes de la Cruz, Bastien Cautain, Fernando Reyes, Jenny Rodríguez, ‡ and Olivier P. Thomas*, † ESPOL Escuela Superior Politecnicá del Litoral, ESPOL, Centro Nacional de Acuacultura e Investigaciones Marinas, Campus Gustavo Galindo km. 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador ‡ Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland § Zoology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland ⊥ ́ Equipe C-TAC, UMR CNRS 8038 CiTCoM, UniversitéParis Descartes, 4 Avenue de l’Observatoire, 75006 Paris, France ∥ UnitéMoleculeś de Communication et Adaptation des Micro-organismes (UMR 7245), Sorbonne Universites,́ Museuḿ National d’Histoire Naturelle, CNRS, Paris, France # Fundacioń MEDINA, Centro de Excelencia en Investigacioń de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologicó de Ciencias de la Salud, E-18016, Armilla, Granada, Spain *S Supporting Information ABSTRACT: In the search for bioactive marine natural products from zoantharians of the Tropical Eastern Pacific, four new tyrosine dipeptides,
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Three New Species and the Molecular Phylogeny of Antipathozoanthus
    A peer-reviewed open-access journal ZooKeys 725: 97–122Three (2017) new species and the molecular phylogeny ofAntipathozoanthus ... 97 doi: 10.3897/zookeys.725.21006 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Three new species and the molecular phylogeny of Antipathozoanthus from the Indo-Pacific Ocean (Anthozoa, Hexacorallia, Zoantharia) Hiroki Kise1,2, Takuma Fujii1,3, Giovanni Diego Masucci1, Piera Biondi1, James Davis Reimer1,2,4 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2 Palau International Coral Reef Center, 1-M-Dock Road, Koror, Palau 96940 3 Research Center for Island Studies Amami Station, Kagoshima University, Naze-Yanagimachi 2-1, Amami, Kagoshima 894-0032, Japan 4 Tropical Biosphere Research Cen- ter, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Corresponding author: Hiroki Kise ([email protected]) Academic editor: B.W. Hoeksema | Received 15 September 2017 | Accepted 7 November 2017 | Published 29 December 2017 http://zoobank.org/E47535C1-21CF-417C-A212-F6E819080565 Citation: Kise H, Fujii T, Masucci GD, Biondi P, Reimer JD (2017) Three new species and the molecular phylogeny of Antipathozoanthus from the Indo-Pacific Ocean (Anthozoa, Hexacorallia, Zoantharia). ZooKeys 725: 97–122.https:// doi.org/10.3897/zookeys.725.21006 Abstract In this study, three new species of macrocnemic zoantharians (Hexacorallia, Zoantharia) are described from localities in the Indo-Pacific Ocean including the Red Sea, the Maldives, Palau, and southern Ja- pan: Antipathozoanthus obscurus sp. n., A. remengesaui sp. n., and A. cavernus sp.
    [Show full text]
  • Strong Linkages Between Depth, Longevity and Demographic Stability Across Marine Sessile Species
    Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Doctorat en Ecologia, Ciències Ambientals i Fisiologia Vegetal Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Memòria presentada per Ignasi Montero Serra per optar al Grau de Doctor per la Universitat de Barcelona Ignasi Montero Serra Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Maig de 2018 Adivsor: Adivsor: Dra. Cristina Linares Prats Dr. Joaquim Garrabou Universitat de Barcelona Institut de Ciències del Mar (ICM -CSIC) A todas las que sueñan con un mundo mejor. A Latinoamérica. A Asun y Carlos. AGRADECIMIENTOS Echando la vista a atrás reconozco que, pese al estrés del día a día, este ha sido un largo camino de aprendizaje plagado de momentos buenos y alegrías. También ha habido momentos más difíciles, en los cuáles te enfrentas de cara a tus propias limitaciones, pero que te empujan a desarrollar nuevas capacidades y crecer. Cierro esta etapa agradeciendo a toda la gente que la ha hecho posible, a las oportunidades recibidas, a las enseñanzas de l@s grandes científic@s que me han hecho vibrar en este mundo, al apoyo en los momentos más complicados, a las que me alegraron el día a día, a las que hacen que crea más en mí mismo y, sobre todo, a la gente buena que lucha para hacer de este mundo un lugar mejor y más justo. A tod@s os digo gracias! GRACIAS! GRÀCIES! THANKS! Advisors’ report Dra. Cristina Linares, professor at Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (Universitat de Barcelona), and Dr.
    [Show full text]
  • Adriatic Sea: Ecology (Draft Report)
    UNITED NATIONS UNEP(DEPI)/MED WG.408/Inf.14 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN May 2015 Original: English Twelfth Meeting of Focal Points for Specially Protected Areas Athens, Greece, 25-29 May 2015 Agenda item 10: Marine and Coastal Protected Areas, including in the open seas and deep seas 10.2. Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea including the High Seas 10.2.1. Activities for the identification and creation of SPAMIs in the open seas, including the deep seas Adriatic Sea: Ecology (draft report) For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP RAC/SPA - Tunis, 2015 Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of RAC/SPA and UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2015 United Nations Environment Programme / Mediterranean Action Plan (UNEP/MAP) Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - Tunisia E-mail: [email protected] The original version of this document was prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by: Carlo CERRANO, RAC/SPA Consultant. Table of contents 1. INTRODUCTION ......................................................................................................................................
    [Show full text]
  • Resilience of Long-Lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology
    Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Ignasi Montero Serra Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Doctorat en Ecologia, Ciències Ambientals i Fisiologia Vegetal Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Memòria presentada per Ignasi Montero Serra per optar al Grau de Doctor per la Universitat de Barcelona Ignasi Montero Serra Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Maig de 2018 Adivsor: Adivsor: Dra. Cristina Linares Prats Dr. Joaquim Garrabou Universitat de Barcelona Institut de Ciències del Mar (ICM-CSIC) A todas las que sueñan con un mundo mejor. A Latinoamérica. A Asun y Carlos. AGRADECIMIENTOS Echando la vista a atrás reconozco que, pese al estrés del día a día, este ha sido un largo camino de aprendizaje plagado de momentos buenos y alegrías. También ha habido momentos más difíciles, en los cuáles te enfrentas de cara a tus propias limitaciones, pero que te empujan a desarrollar nuevas capacidades y crecer. Cierro esta etapa agradeciendo a toda la gente que la ha hecho posible, a las oportunidades recibidas, a las enseñanzas de l@s grandes científic@s que me han hecho vibrar en este mundo, al apoyo en los momentos más complicados, a las que me alegraron el día a día, a las que hacen que crea más en mí mismo y, sobre todo, a la gente buena que lucha para hacer de este mundo un lugar mejor y más justo.
    [Show full text]
  • Section 3.4 Invertebrates
    Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6
    [Show full text]