Tetraspanin 3: a Central Endocytic Membrane Component Regulating the Expression of ADAM10, Presenilin and the Amyloid Precursor Protein

Total Page:16

File Type:pdf, Size:1020Kb

Tetraspanin 3: a Central Endocytic Membrane Component Regulating the Expression of ADAM10, Presenilin and the Amyloid Precursor Protein Biochimica et Biophysica Acta 1864 (2017) 217–230 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein Lisa Seipold a,MarkusDammea, Johannes Prox a, Björn Rabe a, Petr Kasparek b, Radislav Sedlacek b, Hermann Altmeppen c, Michael Willem d, Barry Boland e, Markus Glatzel c, Paul Saftig a,⁎ a Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany b Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic c Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany d Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany e Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland article info abstract Article history: Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α- Received 12 July 2016 secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch Received in revised form 28 October 2016 signalling we have only limited information about its regulation. In this study, we have identified ADAM10 Accepted 2 November 2016 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed Available online 3 November 2016 in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to γ Keywords: bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the - ADAM10 secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and Tetraspanin was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding APP tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Presenilin Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expres- sion of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway. © 2016 Elsevier B.V. All rights reserved. 1. Introduction to these protein interactions. Most likely, different tetraspanins act in concert in a tissue-specific context in the regulation of the stability Tetraspanins were discovered in the early 90s as proteins which and intracellular trafficking of membrane proteins. This affects the span the membrane four times. Today, the 33 known mammalian steady state level and localization of tetraspanin partner proteins in a members of the tetraspanin family are involved in diverse biological given cellular or membrane compartment [1]. processes including the regulation of immune responses, infection Members of the ADAM (A Disintegrin And Metalloproteinase) family with pathogens and cancer progression [1]. As glycosylated and which can mediate the proteolytic processing of membrane proteins palmitoylated proteins, tetraspanins interact with each other and with referred to as ectodomain shedding [6] were also found to interact many transmembrane proteins including integrins, cell adhesion with certain tetraspanins. In particular, the interaction of tetraspanins proteins, growth factor and cytokine receptors and membrane embed- with ADAM10 has raised attention due to its proteolytic function as an ded enzymes [2–5]. Such an interaction network of tetraspanins and amyloid precursor protein (APP) α-secretase, as the sheddase of the transmembrane proteins was previously referred to as the “tetraspanin cellular prion protein (PrPc) and as a Notch1 receptor site 2 proteinase web” [2]. The transmembrane domains and the large extracellular loop [7–10] was found to interact with members of the tetraspanin super- of tetraspanins as well as the surrounding lipid composition contribute family. A subfamily of tetraspanins, TspanC8, with eight cysteines in the large extracellular domain, appeared to have high affinity to ⁎ Corresponding author. ADAM10. Tspan5, 10, 14, 15, 17 and 33 interact with ADAM10 and E-mail address: [email protected] (P. Saftig). regulate its exit from the ER and transport to the plasma membrane http://dx.doi.org/10.1016/j.bbamcr.2016.11.003 0167-4889/© 2016 Elsevier B.V. All rights reserved. 218 L. Seipold et al. / Biochimica et Biophysica Acta 1864 (2017) 217–230 where ectodomain shedding occurs [11–14]. Overexpression or RNAi- was cloned into a yeast expression vector (pTMBV4) and C-terminally mediated downregulation of the TspanC8s caused changes in the matu- fused to a Cub-LexA-VP16 cassette. Expression of the ADAM10 bait ration process and stabilized the surface expression of ADAM10 [12]. construct was monitored using positive (NubI) and negative (NubG) The interaction between different TspanC8 proteins and ADAM10 starts controls as supplied by the manufacturer. ADAM10 bait construct was in the ER [12] and mainly involves the large extracellular loop at the side co-transfected with N-terminally NubG-tagged murine cDNA brain of the TspanC8s and the membrane-proximal domain as well as the library (MoBiTec) into NMY51 yeast and seeded on selective media disintegrin domain in the ADAM10 protein [15]. The interaction of plates (−Leu, −Trp, −His). After incubation for 3–5daysat30°C ADAM10 with different TspanC8s may differentially affect the shedding clones were selected and expanded. Prey plasmids were extracted and of ADAM10 substrates including Notch1 [16]. It is of note that the analyzed by sequencing (GATC). TspanC8 family was also recently implicated in a possible functional clustering of the γ-secretase complex and the APP α-secretase, ADAM10 [17]. 2.3. Cell culture, transfection and plasmids Tetraspanin-3 (Tspan3) is another member of the tetraspanin super- fi family but only contains six cysteines in the large luminal domain. It was All cells were cultured in DMEM (Thermo Fisher Scienti c, Waltham, shown to associate with claudin-11 and beta1 integrin thereby regulat- USA) with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin at ing the proliferation and migration of oligodendrocytes [18,19]. Tspan3 37 °C, 5% CO2 atmosphere and 95% relative humidity. HEK293 and N2A is expressed in all stages in oligodendrocyte development but is most cells stably overexpressing APP695 or APP695swe (Swedish mutant prominently expressed in neurons and astrocytes [19]. In brain, provided by Michael Willem, DZNE, Munich) were additionally supple- μ fi Tspan3 associates with the Nogo-A receptor sphingosine-1-phosphate mented with 200 g/ml of the antibiotic G418. HEK293 cells de cient − − − − receptor 2 (S1PR2). Tspan3 knockdown reduced the Nogo-A-induced for ADAM10 (A10 / ) or ADAM17 (A17 / )were generated by S1PR2 clustering, cell spreading and the inhibition of neurite outgrowth using the CRISPR/Cas9 system. The cells were transiently transfected [20].InXenopus leavis embryos Tspan3 is expressed in migratory neural with Polyethylenimin Max (PEI, Polysciences, Hirschberg, Germany). crest cells [21]. Tspan3 was also found to be a causative factor in the For inhibition of ADAM10 cell culture medium was supplemented μ development of acute myelogenous leukemia (AML) and deficiency of with 10 M of the hydroxamate-based inhibitor GI254023X (Iris Tspan3 led to an impaired stem cell-renewal and disease propagation Biotech, Marktredwitz, Germany) for 12 h. Mammalian expression [22]. vectors were pCI-neo (human APP695), pcDNA3.1Hygro (ADAM10) Using a yeast split-ubiquitin based screening system we identified and pFrog3 (murine Tspan3-myc and Tspan15-myc) derived from fi Tspan3 as a binding partner of ADAM10. This interaction did not affect pcDNA3 (Thermo Fisher Scienti c, Waltham, USA) [25]. The myc- the trafficking or maturation of the protease or its ability to cleave the epitope was inserted after the last amino acid of Tspan3 or Tspan15, neuronal cadherin (N-cadherin). However, cell-based experiments respectively. The myc-tagged murine Tspan7 expression plasmid was revealed that Tspan3 affected the stabilization of ADAM10 and APP at purchased from OriGene Technologies Rockville, USA (MR221859). the cell surface. Our experiments suggest that Tspan3 is part of an interaction scaffold that associates with APP and α- and γ-secretases 2.4. Generation of the Tspan3Y243L mutant at the plasma membrane and within the endocytic pathway. Tspan3Y243L was generated by mutating the cDNA sequence of myc- 2. Material and methods tagged wild type Tspan3. cDNA sequence coding for the amino acid Tyrosine (Y) at position 243 was exchanged by the sequence coding 2.1. Antibodies for Leucine (L). Myc-tagged Tspan3Y243L was again subcloned into the pFrog3
Recommended publications
  • T2 and T17 Cytokines Alter the Cargo and Function of Airway Epithelium
    Ax et al. Respiratory Research (2020) 21:155 https://doi.org/10.1186/s12931-020-01402-3 RESEARCH Open Access T2 and T17 cytokines alter the cargo and function of airway epithelium-derived extracellular vesicles Elisabeth Ax1,2 , Zala Jevnikar2, Aleksander Cvjetkovic1 , Carina Malmhäll1 , Henric Olsson2, Madeleine Rådinger1*† and Cecilia Lässer1*† Abstract Background: Asthma is a common and heterogeneous disease that includes subgroups characterized by type 2 (T2) or type 17 (T17) immune responses for which there is a need to identify the underlying mechanisms and biomarkers in order to develop specific therapies. These subgroups can be defined by airway epithelium gene signatures and the airway epithelium has also been implicated to play a significant role in asthma pathology. Extracellular vesicles (EVs) carry functional biomolecules and participate in cell-to-cell communication in both health and disease, properties that are likely to be involved in airway diseases such as asthma. The aim of this study was to identify stimulus-specific proteins and functionality of bronchial epithelium-derived EVs following stimulation with T2 or T17 cytokines. Methods: EVs from cytokine-stimulated (T2: IL-4 + IL-13 or T17: IL-17A + TNFα) human bronchial epithelial cells cultured at air-liquid interface (HBEC-ALI) were isolated by density cushion centrifugation and size exclusion chromatography and characterized with Western blotting and electron microscopy. Transcriptomic (cells) and proteomic (EVs) profiling was also performed. Results: Our data shows that EVs are secreted and can be isolated from the apical side of HBEC-ALI and that cytokine stimulation increases EV release. Genes upregulated in cells stimulated with T2 or T17 cytokines were increased also on protein level in the EVs.
    [Show full text]
  • Machine-Learning and Chemicogenomics Approach Defi Nes and Predicts Cross-Talk of Hippo and MAPK Pathways
    Published OnlineFirst November 18, 2020; DOI: 10.1158/2159-8290.CD-20-0706 RESEARCH ARTICLE Machine -Learning and Chemicogenomics Approach Defi nes and Predicts Cross-Talk of Hippo and MAPK Pathways Trang H. Pham 1 , Thijs J. Hagenbeek 1 , Ho-June Lee 1 , Jason Li 2 , Christopher M. Rose 3 , Eva Lin 1 , Mamie Yu 1 , Scott E. Martin1 , Robert Piskol 2 , Jennifer A. Lacap 4 , Deepak Sampath 4 , Victoria C. Pham 3 , Zora Modrusan 5 , Jennie R. Lill3 , Christiaan Klijn 2 , Shiva Malek 1 , Matthew T. Chang 2 , and Anwesha Dey 1 ABSTRACT Hippo pathway dysregulation occurs in multiple cancers through genetic and non- genetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defi ning tumors that are Hippo pathway–dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type–agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage- independent signature for the Hippo pathway in cancers.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • An Extracellular Site on Tetraspanin CD151 Determines Α3 and Α6
    JCBArticle An extracellular site on tetraspanin CD151 determines ␣3 and ␣6 integrin–dependent cellular morphology Alexander R. Kazarov, Xiuwei Yang, Christopher S. Stipp, Bantoo Sehgal, and Martin E. Hemler Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115 he ␣3␤1 integrin shows strong, stoichiometric, direct Brij 96–resistant) were independent of the QRD/TS151r lateral association with the tetraspanin CD151. As site, occurred late in biosynthesis, and involved mature T shown here, an extracellular CD151 site (QRD194–196) integrin subunits. Presence of the CD151–QRD194–196→INF is required for strong (i.e., Triton X-100–resistant) ␣3␤1 mutant disrupted ␣3 and ␣6 integrin–dependent formation association and for maintenance of a key CD151 epitope of a network of cellular cables by Cos7 or NIH3T3 cells on (defined by monoclonal antibody TS151r) that is blocked basement membrane Matrigel and markedly altered cell upon ␣3 integrin association. Strong CD151 association spreading. These results provide definitive evidence that with integrin ␣6␤1 also required the QRD194–196 site and strong lateral CD151–integrin association is functionally masked the TS151r epitope. For both ␣3 and ␣6 integrins, important, identify CD151 as a key player during ␣3 and strong QRD/TS151r-dependent CD151 association occurred ␣6 integrin–dependent matrix remodeling and cell spreading, early in biosynthesis and involved ␣ subunit precursor and support a model of CD151 as a transmembrane linker forms. In contrast, weaker associations of CD151 with itself, between extracellular integrin domains and intracellular integrins, or other tetraspanins (Triton X-100–sensitive but cytoskeleton/signaling molecules.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Supplementary Figure S1 Functional Characterisation of Snmp:GFP
    doi: 10.1038/nature06328 SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE LEGENDS Figure S1 | Functional characterisation of SNMP fusion proteins. Dose-response curve for cVA in Or67d neurons of wild-type (Berlin), SNMP mutant (Or67d- GAL4/+;SNMP1/SNMP2), SNMP:GFP rescue (Or67d-GAL4/UAS- SNMP:GFP;SNMP1/SNMP2) and YFP(1):Or83b/SNMP:YFP(2) rescue (Or67d:GAL4,UAS-YFP(1):Or83b/UAS-SNMP:YFP(2);SNMP1,Or83b2/SNMP2,Or83b1 ) animals. Mean responses are plotted (± s.e.m; wild-type n=47, SNMP mutant n=46, SNMP:GFP rescue n=20; YFP(1):Or83b/SNMP:YFP(2) rescue n=22; ≤4 sensilla/animal, mixed genders). Wild-type and SNMP:GFP rescue responses to cVA are not significantly different (ANOVA; p>0.1175). YFP(1):Or83b/SNMP:YFP(2) rescue responses to cVA are highly significantly different from SNMP mutants and from wild- type (ANOVA; p<0.0001), indicating partial rescue. Figure S2 | Cell type-specific rescue of SNMP expression. a, Immunostaining for mCD8:GFP (anti-GFP, green) and LUSH (magenta) in LUSH-GAL4/UAS-mCD8:GFP animals reveals faithful recapitulation of endogenous expression by the LUSH-GAL4 driver. b, Two-colour RNA in situ hybridisation for SNMP (green) and Or67d (magenta) in antennal sections of wild-type, Or67d neuron SNMP rescue (Or67d-GAL4/UAS- SNMP;SNMP1/SNMP2) and support cell SNMP rescue (LUSH-GAL4/UAS- SNMP;SNMP1/SNMP2) animals. www.nature.com/nature 1 Benton et al., Figure S1 ) -1 wild-type 120 SNMP:GFP rescue 80 YFP(1):Or83b/SNMP:YFP(2) rescue 40 Corrected response (spikes s 0 SNMP-/- 0 0.1 1 10 100 cVA (%) www.nature.com/nature 2 Benton
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]
  • Page 1 Supplemental Table I Upin WTVG Upin Humlowfb FAR1
    Supplemental Table I UPinWTvG UPinHuMlowFB overlap FAR1 CD209 PLEKHO2 B2M IL27 GCLC CALR HMGN2P46 ME1 XPO1 CLEC1A NEK6 PDIA3 HSD17B14 TMEM106A SERPINH1 NSUN7 KCNJ15 PLEKHO2 SEMA6B SH3PXD2B HSPD1 BAALC RHOU SYVN1 CEACAM4 TGFBI DNAJB9 KATNAL2 CTSZ SLC25A19 CCDC175 SULF2 MHCII CARD14 P2RY6 MDN1 TDO2 CD74 GCLC FCAR HLA-DQB1 PTPN2 GLDN CD14 CHORDC1 MMP7 CSF2RB LOX CLEC5A MRC1 STIP1 ZMYND15 ITGAX BPIFB1 ITLN1 SLAMF7 ME1 DKK2 CD84 PDIA6 FAM124A FCGR2A HYOU1 F3 CLEC10A NLRC5 DZIP1L IFI30 NEK6 CECR6 CLEC4A SLC39A14 NDP CLEC7A TMEM106AFCGR1A TFEC KCNJ15 CCL7 C1QC SH3PXD2B CRABP2 C1QA RHOU PIPOX FOLR2 LRP2 CCL2 CH25H MVD VSIG4 C1QB TGFBI LINC01010 SIGLEC1 NFKB2 DPRXP4 CTSS C5 FAM20A CCR1 HSP90B1 ANKRD29 SLAMF8 ALDH18A1 OCSTAMP MS4A7 EDEM1 TGM2 HK3 CTSZ TM4SF19 CXCL10 C6 TRPV4 CTSK AACS CCL8 MSR1 PPA1 CCL1 STEAP4 PIK3R5 KCNE1 CXCL9 RASAL3 SLC9A7P1 MS4A6A DOCK11 CHI3L1 TIMP1 BHLHE40 LOC731424 CD209 HCLS1 DCSTAMP CCL7 FASN MSR1 PDCD1LG2 PDIA4 IL31RA CCL2 ITK CXCL3 CXCL2 CRELD2 TREM2 C15orf48 SFTPD MGST1 GPR84 BCL3 METTL7B CXCL5 SULF2 TMEM86A OCSTAMP CYP51A1 A2M SERPINA1 CREB3L1 AQP9 MMP12 DUSP2 NUPR1 CCL8 ADAM8 FHAD1 CCL24 P2RY6 YPEL4 FBP1 KCNAB2 FBP1 NA NFKBIE LOC100506585 NA FSCN1 CXCL16 NA MANF RAB13 NA SLC5A3 LOC391322 NA CTSC IL8 NA COTL1 MS4A4A NA HSPA5 SERPING1 NA MUC5B PLA2G4C NA CD74 CA12 NA HLA-DQB1 GBP1P1 NA SLC7A2 C11orf45 NA FABP5 ACVRL1 NA CIITA SPP1 NA RAB3IL1 TLN2 NA HSPE1 NDRG2 NA SCD C15orf48 NA ITIH4 KCNJ15 NA SERPINA3 MEIS3P1 NA LAG3 IL1RN NA FOXM1 HNMT NA CD14 CYP27B1 NA RRM2 CDCP1 NA ABCD2 FOLR2 NA FCRL2 ECM1 NA PDE3B ADAMDEC1
    [Show full text]
  • The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation Through Modulation of NOTCH Signaling
    The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation through Modulation of NOTCH Signaling This information is current as Almudena Ruiz-García, Susana López-López, José Javier of September 25, 2021. García-Ramírez, Victoriano Baladrón, María José Ruiz-Hidalgo, Laura López-Sanz, Ángela Ballesteros, Jorge Laborda, Eva María Monsalve and María José M. Díaz-Guerra J Immunol published online 29 August 2016 Downloaded from http://www.jimmunol.org/content/early/2016/08/27/jimmun ol.1600421 Supplementary http://www.jimmunol.org/content/suppl/2016/08/27/jimmunol.160042 http://www.jimmunol.org/ Material 1.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 29, 2016, doi:10.4049/jimmunol.1600421 The Journal of Immunology The Tetraspanin TSPAN33 Controls TLR-Triggered Macrophage Activation through Modulation of NOTCH Signaling Almudena Ruiz-Garcı´a,1 Susana Lo´pez-Lo´pez,1 Jose´ Javier Garcı´a-Ramı´rez, Victoriano Baladro´n, Marı´a Jose´ Ruiz-Hidalgo, Laura Lo´pez-Sanz, A´ ngela Ballesteros, Jorge Laborda, Eva Marı´a Monsalve, and Marı´a Jose´ M.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. The CX3CR1/CX3CL1 Axis Drives the Migration and Maturation of Oligodendroglia in the Central Nervous System Catriona Ford Thesis Submitted for the Degree of Doctor of Philosophy The University of Edinburgh 2017 Abstract In the central nervous system, the axons of neurons are protected from damage and aided in electrical conductivity by the myelin sheath, a complex of proteins and lipids formed by oligodendrocytes. Loss or damage to the myelin sheath may result in impairment of electrical axonal conduction and eventually to neuronal death. Such demyelination is responsible, at least in part, for the disabling neurodegeneration observed in pathologies such as Multiple Sclerosis (MS) and Spinal Cord Injury. In the regenerative process of remyelination, oligodendrocyte precursor cells (OPCs), the resident glial stem cell population of the adult CNS, migrate toward the injury site, proliferate and differentiate into adult oligodendrocytes which subsequently reform the myelin sheath.
    [Show full text]