Effects of Basic Amino Acids and Their Derivatives on SARS-Cov-2 and Influenza-A Virus Infection

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Basic Amino Acids and Their Derivatives on SARS-Cov-2 and Influenza-A Virus Infection viruses Article Effects of Basic Amino Acids and Their Derivatives on SARS-CoV-2 and Influenza-A Virus Infection Ivonne Melano 1 , Li-Lan Kuo 2, Yan-Chung Lo 3, Po-Wei Sung 4, Ni Tien 5,6 and Wen-Chi Su 1,2,7,* 1 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 2 Research Center for Emerging Viruses, China Medical University Hospital, Taichung 40402, Taiwan; [email protected] 3 Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; [email protected] 4 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 5 Department of Laboratory Medicine, China Medical University Hospital, Taichung 40402, Taiwan; [email protected] 6 Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan 7 International Master’s Program of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] Abstract: Amino acids have been implicated with virus infection and replication. Here, we demon- strate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal Citation: Melano, I.; Kuo, L.-L.; Lo, acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich Y.-C.; Sung, P.-W.; Tien, N.; Su, W.-C. Effects of Basic Amino Acids and food intake can be considered as prophylactic and therapeutic regimens against these viruses while Their Derivatives on SARS-CoV-2 and also providing a paradigm for the development of broad-spectrum antivirals. Influenza-A Virus Infection. Viruses 2021, 13, 1301. https://doi.org/ Keywords: SARS-CoV-2; COVID-19; influenza A virus; lysine; arginine; disease prevention; 10.3390/v13071301 antiviral therapy Academic Editor: Kenneth Lundstrom 1. Introduction Received: 14 May 2021 Coronavirus disease 2019 (COVID-19) is a global pandemic and has burdened the Accepted: 30 June 2021 world since late 2019. With a reproductive number of around 3.28 [1], severe acute res- Published: 4 July 2021 piratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, has infected approximately 158 million people worldwide; while 3.29 million individuals have Publisher’s Note: MDPI stays neutral succumbed to the virus by April 2021 (Source: World Health Organization). Thus far, there with regard to jurisdictional claims in are seven coronaviruses (CoVs) that can infect humans, and only three CoVs, including published maps and institutional affil- SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, iations. cause severe symptoms and even death [2]. Recovered patients from SARS-CoV, which shares 82.45% homology with SARS-CoV-2 [3], were incapable of fully gaining back their lung function even after two years post-infection [4]. COVID-19, however, has a lower mortality rate yet shows similar clinical manifestations as SARS-CoV infection. Moreover, Copyright: © 2021 by the authors. it has reports show that even after months of being cleared of SARS-CoV-2 viral antigen, Licensee MDPI, Basel, Switzerland. people (called “long haulers”) were still experiencing the severe effects of COVID-19, such This article is an open access article as extreme fatigue and brain fog [5]. Currently, no effective treatment against SARS-CoV-2 distributed under the terms and is available. conditions of the Creative Commons Attribution (CC BY) license (https:// The influenza A virus (IAV), a causative agent of the common flu, is another respiratory creativecommons.org/licenses/by/ virus that causes annual epidemics and recurring pandemics that threaten public health 4.0/). and the global economy. Though vaccines and antivirals against IAV are in development Viruses 2021, 13, 1301. https://doi.org/10.3390/v13071301 https://www.mdpi.com/journal/viruses Viruses 2021, 13, x FOR PEER REVIEW 2 of 14 Viruses 2021, 13, 1301 2 of 13 health and the global economy. Though vaccines and antivirals against IAV are in devel- opment and production, its rapid evolution still poses a cause for concern [6]. Further- more,and production,it has a high its rate rapid of evolutionco-infection still with poses SARS-CoV-2 a cause for concern [7]. Pre-infection [6]. Furthermore, of IAV itaug- has a mentshigh SARS-CoV-2 rate of co-infection infectivity, with SARS-CoV-2increases SARS-CoV-2 [7]. Pre-infection viral load, of IAV and augments induces more SARS-CoV-2 severe lunginfectivity, pathogenic increases changes SARS-CoV-2 [8,9]. viral load, and induces more severe lung pathogenic changesBoth of [8 ,9these]. enveloped viruses enter the cells via receptor-mediated endocytosis. Their virusBoth surface of these proteins enveloped, SARS-CoV-2 viruses enter Spike the protein cells via and receptor-mediated IAV Hemagglutinin endocytosis. (HA), recognizeTheir virus andsurface bind to proteins,the cell surface SARS-CoV-2 receptors Spike ACE2 protein and sialic and acid-containing IAV Hemagglutinin receptors, (HA), respectively.recognize and The bind host to cell the then cell engulfs surface receptorsthe virus ACE2by endocytosis. and sialic During acid-containing endocytosis, receptors, the endosomesrespectively. have The low host pH cell (pH then 6.5-4.8) engulfs that the trigge virusrs the by endocytosis.viral attachment During proteins endocytosis, to induce the conformationalendosomes have changes low pH of (pHfusing 6.5-4.8) with thatthe endosomal triggers the membrane viral attachment and proceed proteins to to uncoat induce andconformational release its viral changes genome of into fusing the with cytoplasm the endosomal [10–15]. Another membrane cell and entry proceed mechanism to uncoat of SARS-CoV-2and release is its by viral plasma genome membrane into the fusion cytoplasm, wherein [10–15 TMPRSS2,]. Another a cell cell entry surface mechanism protease, of cleavesSARS-CoV-2 SARS-CoV-2 is by plasmaSpike to membrane promote viral fusion, and wherein cell membra TMPRSS2,ne fusion; a cell now surface permitting protease, SARS-CoV-2cleaves SARS-CoV-2 to release Spikeits viral to genome promote into viral the and cytoplasm cell membrane [16–18]. fusion; now permitting SARS-CoV-2A high mutation to release rate its is viral a significant genome challenge into the cytoplasm in developing [16–18 antivirals]. against RNA viruses.A These high mutationmutations rate may is benefit a significant virus challengelife cycles, in such developing as evading antivirals immune against response, RNA increasingviruses. Thesevirus mutationstransmissibility, may benefit or enhancing virus life pathogenesis. cycles, such Hence, as evading the need immune to discover response, broad-spectrumincreasing virus antiviral transmissibility, agents for or current enhancing and pathogenesis.future virus diseases Hence, is the undisputed need to discover [19]. Previousbroad-spectrum research has antiviral shown agents that the for amino current acids and futurearginine virus and diseases lysine play is undisputed roles in virus [19 ]. infectionPrevious and research replication has shown[20–26]. that Lysine, the amino an essential acids amino arginine acid, and has lysine long play been roles prescribed in virus againstinfection herpes and simplex replication virus [20 (HSV)–26]. Lysine, infection an essential[25–27]. A amino high acid,lysine/arginine has long been ratio prescribed has de- creasedagainst HSV herpes plaque simplex formation virus in (HSV) vitro infection[22–24]. Clinical [25–27]. trials A high have lysine/arginine exhibited a reduction ratio has decreased HSV plaque formation in vitro [22–24]. Clinical trials have exhibited a reduction of recurrent HSV attacks, fewer healing days, and milder symptoms during a six-month of recurrent HSV attacks, fewer healing days, and milder symptoms during a six-month period of L-lysine monochloride therapy [27,28]. Therefore, we investigated whether period of L-lysine monochloride therapy [27,28]. Therefore, we investigated whether these these basic amino acids could also affect SARS-CoV-2 and IAV infection. In this study, we basic amino acids could also affect SARS-CoV-2 and IAV infection. In this study, we used an used an in vitro system to evaluate the effects of lysine, arginine, and their derivatives, L- in vitro system to evaluate the effects of lysine, arginine, and their derivatives, L-Arginine Arginine methyl ester dihydrochloride (Arg-ester), and L-Lysine ethyl ester dihydrochlo- methyl ester dihydrochloride (Arg-ester), and L-Lysine ethyl ester dihydrochloride (Lys- ride (Lys-ester) (Figure 1), on SARS-CoV-2 and IAV infection. ester) (Figure1), on SARS-CoV-2 and IAV infection. FigureFigure 1. 1.ChemicalChemical structure structure of ofthe the compounds. compounds. 2. Materials and Methods 2. Materials and Methods 2.1. Cells 2.1. Cells HEK293T cells were grown in DMEM (Gibco), supplemented with 10% FBS and antibioticsHEK293T (100 cells U/mL were penicillin grown in G DMEM and 100 (Gibco),µg/mL supplemented streptomycin). with Huh7 10% cells FBS were and grown an- tibioticsin the same(100 U/mL media penicillin but with addedG and 1%100 non-essentialµg/mL streptomycin). amino acids. Huh7 H1650 cells cellswere were grown grown in thein same RPMI media (Gibco), but supplemented with added 1% with non-essent 10% FBSial (Hyclone) amino acids. and H1650 antibiotics. cells were A549 grown cells were in RPMImaintained (Gibco), in supplemented an F-12K medium with (Gibco), 10% FBS supplemented (Hyclone) and with antibiotics. 10% FBS and A549 antibiotics. cells were All ◦ maintainedcells were in cultured an F-12K at 37mediumC and (Gibco), 5% CO 2supplemented. with 10% FBS and antibiotics. All cells were cultured at 37 °C and 5% CO2.
Recommended publications
  • Amino Acids Amino Acids
    Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine.
    [Show full text]
  • Neurotransmitters: Critical Amino Acids Affecting
    1 NEUROTRANSMITTERS: CRITICAL AMINO ACIDS AFFECTING SEROTONIN AND DOPAMINE Approved _____________________________Date: _August 19, 2015__________________ 2 NEUROTRANSMITTERS: CRITICAL AMINO ACIDS AFFECTING SEROTONIN AND DOPAMINE __________________ Seminar Paper Presented to The Graduate Faculty University of Wisconsin-Platteville __________________ In Partial Fulfillment of the Requirement for the Degree Masters of Science In Adult Education With Emphasis in Counseling __________________ By Laurie Williams 2015 3 Acknowledgments I am grateful to have had the privilege to work with many exceptional professors in their fields of study. I am particularly appreciative that I received both classroom training and advising from my program coordinator and advisor to my Seminar Paper, Dr. Patricia Bromley. I am very thankful for the efforts of all the professors and staff I worked with at UW-Platteville, as well as UW-Whitewater and UW-Rock County for my superior undergraduate and master’s education. I appreciate the opportunity and support to individually examine scholarly research including published articles, academic books, and professional books on my subjects of interest. 4 iii Abstract NEUROTRANSMITTERS: CRITICAL AMINO ACIDS AFFECTING SEROTONIN AND DOPAMINE This paper examines how amino acids from foods critically affect neurotransmitters, which, in turn, affect every area of brain and body health. The manner in which neurotransmitters can affect personality, mental health, and learning disabilities is explored in this research review. Inadequate amino acid nutrition or exposure to poisonous chemicals or drugs can directly cause nerve cells to function poorly. Resulting changes in quantities of neurotransmitters such as serotonin and dopamine can influence emotional states like anger, frustration, or depression, but can also influence energy, speed of thought, activity level, speech volume and fluency, social functioning, and memory.
    [Show full text]
  • The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein
    nutrients Article The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein Han Fang 1 , Kirsten P. Stone 1 , Sujoy Ghosh 2,3 , Laura A. Forney 4 and Thomas W. Gettys 1,* 1 Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; [email protected] (H.F.); [email protected] (K.P.S.) 2 Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; [email protected] 3 Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore 4 Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Abstract: Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability Citation: Fang, H.; Stone, K.P.; of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction Ghosh, S.; Forney, L.A.; Gettys, T.W.
    [Show full text]
  • Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
    Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway.
    [Show full text]
  • Meat Proteins in Human Nutrition
    MEAT P80T€IN'S IN HUMAN NUTRITION J. KASTELIC Before I can begin to discuss the many questions which are implied in the title of this discussion I must beg your forbearance. I must clearly specify that I am appearing before you as a student of protein nutrition and not as an authority. This is not meant to be an apology. It is a statement which is not only pmdeut but entire1.y appropriate. And I must clear a bit of underb-msli amy before I give the su'oject before us specific consideration, ;^or I can be certain none of you came here only to listen to me reiterate the resalts of nitrogen balance studies published in the literature or to look at relmoductions of tables of data and of graphs which describe the results of the many biological value determinations of proteins that have been obt,ained frola laboratory animal experimentation with which so many of you are now familiar. It would be equally superfluous to call attention to the tremendous volume of literature that is now being published about the underlying eco- nomic, social, technological and medical problems which are confronting man in so many parts of the world today where food production is only sufficient to mainkin life. !here we were once so provincially concerned with vitamin defi- ciency diseases, we now appear to be rather singularly concerned about pro- tein malnutrition and how m might best cope with protein malnutrition in the human obliged to subsist on diets composed of protein-deficient foods. If there is still some controversy about the relative merits of proteins from plant and animal sources in 'numan nutrition it must stem from vexing economic considerations, meat animal production capabilities and problems associated with processing and storage; not fmm a lack of an appreciation of the nutritional role and functions of the amino acids which are essential to life.
    [Show full text]
  • Protein and Amino Acid Requirements for Poultry by Todd J
    PURDUE EXTENSION Animal Sciences AS-584-W Protein and Amino Acid Requirements for Poultry by Todd J. Applegate - Purdue University Roselina Angel – University of Maryland, College Park Introduction Essential amino acids must be supplied by the diet, This fact sheet has been developed to support the and a sufficient amount of non-essential amino acids implementation of the Natural Resources Conservation must also be supplied to prevent the conversion of Service Feed Management 592 Practice Standard. essential amino acids into non-essential amino acid. The Feed Management 592 Practice Standard was Additionally, if the amino acids supplied are not in adopted by NRCS in 2003 as another tool to assist the proper, or ideal, ratio in relation to the needs of with addressing resource concerns on livestock and the animal, then amino acids in excess of the least poultry operations. Feed management can assist with limiting amino acid will be deaminated and likely used reducing the import of nutrients to the farm and reduce as a source of energy rather than toward body protein the excretion of nutrients in manure. synthesis. This breakdown of amino acids will also Dietary crude protein (CP) requirements are result in higher nitrogenous excretions. somewhat of a misnomer as the requirement is The best way to reduce N in poultry excreta is to based on the amino acids content of the protein. lower the amount of CP that is fed by supplementing Once digested and absorbed, amino acids are used diets with amino acids. Reductions in the non-essential as the building blocks of structural proteins (muscle, amino acid pool, coupled with supplying a more skin, ligaments), metabolic proteins, enzymes, and “ideal” amino acid profile in the diet can substantially precursors of several body components.
    [Show full text]
  • Role and Characteristics of Selected Amino Acid and Peptide Transporters in Epithelial Cells
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Ernährungsphysiologie Role and characteristics of selected amino acid and peptide transporters in epithelial cells Alexander Georg Nickel Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schemann Prüfer der Dissertation: 1. Univ.-Prof. Dr. H. Daniel 2. Univ.-Prof. Dr. Th. F. Hofmann Die Dissertation wurde am 12.05.2009 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 01.09.2009 angenommen. A 2 Zum Erfolg braucht der Forscher die vier großen "G": Geist, Geduld, Geld und Glück. Paul Ehrlich 3 Table of contents 1 Characteristics of L-proline transport in OK cells................................................................ 10 1.1 Introduction ............................................................................................................. 10 1.1.1 Physiological importance of amino acids..................................................... 10 1.1.2 Basic principles of amino acid transport...................................................... 10 1.1.3 Amino acid transport in kidney .................................................................... 11 1.1.3.1 Apical amino acid transporters of the kidney proximal tubule ..................... 12 1.1.3.2
    [Show full text]
  • Metabolism of Methionine in the Newborn Infant: Response to the Parenteral and Enteral Administration of Nutrients
    0031-3998/08/6404-0381 Vol. 64, No. 4, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Metabolism of Methionine in the Newborn Infant: Response to the Parenteral and Enteral Administration of Nutrients BIJU THOMAS, LOURDES L. GRUCA, CAROLE BENNETT, PRABHU S. PARIMI, RICHARD W. HANSON, AND SATISH C. KALHAN Department of Pediatrics [B.T., P.S.P.], MetroHealth Medical Center, Cleveland, Ohio 44109, Department of Medicine [L.L.G., C.B., R.W.H., S.C.K.], Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, Department of Biochemistry [R.W.H.], Case Western Reserve University, Cleveland, Ohio 44106 ABSTRACT: The rates of transmethylation and transsulfuration of birth and of nutrient interventions on the transsulfuration of methionine were quantified using [1-13C]methionine and methionine is unknown. 2 [C H3]methionine tracers in newborn infants born at term gestation The synthesis of cysteine from homocysteine and serine is and in prematurely born low birth weight infants. Whole body rate of regulated by an individual’s nutrient state and by the relative 2 protein breakdown was also measured using [ H5]phenylalanine. The concentration of insulin, glucagon and adrenal corticosteroids response to enteral formula feeding and parenteral nutrition was (10–12). Insulin has a repressive effect on hepatic CGL and on examined in full term and prematurely born babies, respectively. The cystathionine ␤ synthase (CBS), whereas glucagon and glu- relative rates of appearance of methionine and phenylalanine were cocorticoids increase the hepatic activity of these enzymes. comparable to the amino acid composition of mixed body proteins.
    [Show full text]
  • L-Tryptophan, the FDA, and the Regulation of Amino Acids Carter Anne Mcgowan
    Cornell Journal of Law and Public Policy Volume 3 Article 10 Issue 2 Spring 1994 Learning the Hard Way: L-Tryptophan, the FDA, and the Regulation of Amino Acids Carter Anne McGowan Follow this and additional works at: http://scholarship.law.cornell.edu/cjlpp Part of the Law Commons Recommended Citation McGowan, Carter Anne (1994) "Learning the Hard Way: L-Tryptophan, the FDA, and the Regulation of Amino Acids," Cornell Journal of Law and Public Policy: Vol. 3: Iss. 2, Article 10. Available at: http://scholarship.law.cornell.edu/cjlpp/vol3/iss2/10 This Article is brought to you for free and open access by the Journals at Scholarship@Cornell Law: A Digital Repository. It has been accepted for inclusion in Cornell Journal of Law and Public Policy by an authorized administrator of Scholarship@Cornell Law: A Digital Repository. For more information, please contact [email protected]. LEARNING THE HARD WAY: L-TRYPTOPHAN, THE FDA, AND THE REGULATION OF AMINO ACIDS I sit before you helpless, broke, alone and in unyielding, relentless pain .... For those who have died and for those of us who live with cloudy futures, the lack of action is too little, too late. We have needed help with our orphan dis- ease. We need help now .... The U.S. Government is totally ineffective, and each agonizing day we grow more fragile. For those who appear to be in remission, we rejoice. But we cannot say with certainty that anyone is cured as long as the exact cause and cure is not found. For many of us, it is too late.
    [Show full text]
  • The Diverse Functions of Non-Essential Amino Acids in Cancer
    cancers Review The Diverse Functions of Non-Essential Amino Acids in Cancer Bo-Hyun Choi and Jonathan L. Coloff * Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; [email protected] * Correspondence: coloff@uic.edu Received: 16 April 2019; Accepted: 10 May 2019; Published: 15 May 2019 Abstract: Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy. Keywords: aspartate; asparagine; arginine; cysteine; glutamate; glutamine; glycine; proline; serine; cancer 1. Introduction It is now well established that tumors display different metabolic phenotypes than normal tissues [1]. The first observed and most studied metabolic phenotype of tumors is that of increased glucose uptake and glycolysis [2,3], a metabolic phenotype that is exploited in the clinic to image human tumors and metastases via 18flurodeoxyglucose positron emission tomography (18FDG-PET) [4].
    [Show full text]
  • 24Amino Acids, Peptides, and Proteins
    WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1153 CHAPTER COOϪ a -h eli AMINO ACIDS, x ϩ PEPTIDES, AND NH3 PROTEINS Proteins are the most abundant organic molecules 24-1 in animals, playing important roles in all aspects of cell structure and function. Proteins are biopolymers of Introduction 24A-amino acids, so named because the amino group is bonded to the a carbon atom, next to the carbonyl group. The physical and chemical properties of a protein are determined by its constituent amino acids. The individual amino acid subunits are joined by amide linkages called peptide bonds. Figure 24-1 shows the general structure of an a-amino acid and a protein. α carbon atom O H2N CH C OH α-amino group R side chain an α-amino acid O O O O O H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH CH3 CH2OH H CH2SH CH(CH3)2 alanine serine glycine cysteine valine several individual amino acids peptide bonds O O O O O NH CH C NH CH C NH CH C NH CH C NH CH C CH3 CH2OH H CH2SH CH(CH3)2 a short section of a protein a FIGURE 24-1 Structure of a general protein and its constituent amino acids. The amino acids are joined by amide linkages called peptide bonds. 1153 WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1154 1154 CHAPTER 24 Amino Acids, Peptides, and Proteins TABLE 24-1 Examples of Protein Functions Class of Protein Example Function of Example structural proteins collagen, keratin strengthen tendons, skin, hair, nails enzymes DNA polymerase replicates and repairs DNA transport proteins hemoglobin transports O2 to the cells contractile proteins actin, myosin cause contraction of muscles protective proteins antibodies complex with foreign proteins hormones insulin regulates glucose metabolism toxins snake venoms incapacitate prey Proteins have an amazing range of structural and catalytic properties as a result of their varying amino acid composition.
    [Show full text]
  • Degradation of Amino Acids
    • The catabolism of the amino acids found in proteins involves the removal of α-amino groups, followed by the breakdown of the resulting carbon skeletons. These pathways converge to form seven intermediate products: oxaloacetate, α-ketoglutarate, pyruvate, fumarate, succinyl CoA, acetyl Coa, and acetoacetyl CoA. These products directly enter the pathways of intermediary metabolism, resulting either in the synthesis of glucose or lipid, or in the production of energy through their oxidation to CO2 and water by the citric acid cycle. The figure provides an overview of these pathways, with a more detailed summary presented later. GLUCOGENIC AND KETOGENIC AMINO ACIDS" Amino Acids can be classified as glucogenic or ketogenic based on which of the seven intermediates are produced during their catabolism. Glucogenic amino acids Amino acids whose catabolism yield pyruvate or one of the intermediates of the citric acid cycle are termed glucogenic or glycogenic. These intermediates are substrates for gluconeogenesis and, therefore, can give rise to the net formation of glucose or glycogen in the liver and glycogen in the muscle. Ketogenic amino acids Amino acids whose catabolism yield either acetoacetate or one of its precursor are termed ketogenic. Acetoacetate is one of the “ketone bodies”, which also include 3-hydroxybutyrate and acetone. Leucine and lysine are the only exclusively ketogenic amino acids found in proteins. Their carbon skeletons are not substrates for gluconeogenesis and, therefore, cannot give rise to the net formation of glucose or glycogen in the liver, or glycogen in the muscle. CATABOLISM OF THE CARBON SKELETONS OF AMINO ACIDS The pathways by which amino acids are catabolized, are conveniently organized according to which (or more) of the seven intermediates listed above is produced from a particular amino acid.
    [Show full text]