An Overview of Deep Learning Strategies for Time Series Prediction

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Deep Learning Strategies for Time Series Prediction An Overview of Deep Learning Strategies for Time Series Prediction Rodrigo Neves Instituto Superior Tecnico,´ Lisboa, Portugal [email protected] June 2018 Abstract—Deep learning is getting a lot of attention in the last Jenkins methodology [2] and were developed mainly in the few years, mainly due to the state-of-the-art results obtained in area of econometrics and statistics. different areas like object detection, natural language processing, Driven by the rise of popularity and attention in the area sequential modeling, among many others. Time series problems are a special case of sequential data, where deep learning models of deep learning, due to the state-of-the-art results obtained can be applied. The standard option to this type of problems in several areas, Artificial Neural Networks (ANN), which are are Recurrent Neural Networks (RNNs), but recent results are non-linear function approximator, have also been receiving an supporting the idea that Convolutional Neural Networks (CNNs) increasing attention in time series field. This rise of popularity can also be applied to time series with good results. This raises is associated with the breakthroughs achieved in this area, with the following question - Which are the best attributes and architectures to apply in time series prediction problems? It was the successful application of CNNs and RNNs to sequential assessed which is the current state on deep learning applied to modeling problems, with promising results [3]. RNNs are a time-series and studied which are the most promising topologies type of artificial neural networks that were specially designed and characteristics on sequential tasks that are worth it to to deal with sequential tasks, and thus can be used on time be explored. The study focused on two different time series series. They have shown promising results in the area of time problems, wind power forecasting and predictive maintenance. Both experiments were conducted under the same conditions series forecasting [4] and predictive maintenance [5]. across different models to guarantee a fair comparison basis. CNNs that are a different type of neural network, originally The study showed that different models and architectures can designed to deal with images, are also being applied to be applied on distinct time series problems with some level of sequence modeling with very promising results [6]. The recent success, thus showing the value and versatility of deep learning advances in sequence tasks like, natural language processing models in distinct areas. The results also showed that CNNs, together with recurrent architectures, are a viable option to apply [7], speech recognition [8], machine translation [9], are being in time series problems. adopted to be applied in time series problems [10]. These advances in sequence modeling within the area of I. INTRODUCTION deep learning are enormous which makes it overwhelming, being complicated to follow all new advances and research Time series modeling has always been under intense de- directions. In the area of sequence modeling the default option velopment and research in statistics, and more recently, in was always to make use of recurrent models like Long-Short the machine learning area. Time series data often arises in Term Memory (LSTM) and Gated Recurrent Unit (GRU) to different areas, such as economics, business, engineering and capture and model the inherent sequential dependences. Re- many others, and can have different applications. It is possible cently, supported by new paths of research convolutional-based to obtain an understanding of the underlying structure that is models are reaching state-of-the-art results in fields like audio produced by the observed data or to fit a model in order to synthesis or machine translation. A study [11] was made to make predictions about the future. For example, in the energy asses the performance of a convolutional model in sequential sector is of extreme priority to know in advance which will tasks where the authors found that ”a simple convolutional be the power consumed in the next days, or which will be the architecture outperforms canonical recurrent networks such as amount of energy generated from renewable sources. In the LSTMs across a diverge range os tasks and datasets, while retail sector, every company wants to know, in advance which demonstrating longer effective memory”. are going to be their sales, or how many pieces of a certain In this work we present a systematic and fair comparison product will sell to make decisions on how they should manage among different deep learning approaches that are possible to their portfolio. In the heavy industry, a single machine failure use in time series problems, with the objective of assessing can lead to enormous losses, and thereby, if that fault could which are the best characteristics and topologies that we be predicted in advance, could save both time and money. should aim to have in a model. This task was performed in two Several techniques and models can be applied on the field problems: wind power generation forecasting and predictive of time series predictions, being the most known ones from the maintenance areas, where we used and compared different AutoRegressive Integrated Moving Average (ARIMA) family recurrent and convolutional architectures. models. These models were greatly influenced by the Box- The results suggests that convolutional-based algorithms, together with recurrent networks, should be seen as a good only learn one set of parameters, rather than learning a option to use in time series problems. This is supported by different set of parameters for every location. Due to parameter the results obtained on both problems, where we could see sharing CNNs have a property called invariance to translation, that convolutional-based models were able to match and even meaning that if the input changes the output changes in the outperform recurrent models. same way. A typical layer of a convolutional network consists of three II. BACKGROUND stages. In the first stage the layer performs several convolutions Machine learning, and especially deep learning, have been operations in parallel, where is produced distinct features under great development in the last few years. Machine maps. The second stage performs an activation function to learning is a subfield of artificial intelligence (AI), where the each linear activation, introducing an non-linearity. In the third systems have the ability to acquire knowledge, by extracting stage, it is used a pooling function to further modify the output patters from raw data, learning from it, and then making of the layer. This modification introduced by the pooling a determination or prediction about the application that it function replaces the nets output with a summary statistic of was designed for. Deep learning, which in turn is, a subfield nearby outputs. The most used ones are the max and average of machine learning, is mainly based on an algorithm that pooling operations. is known as neural network. Neural networks are able to B. Recurrent Neural Network build complex relationships, extracting the information from RNNs are a type of neural networks that have recurrent data, without any previous knowledge. Theoretically neural connections and are specially designed for processing sequen- networks are universal functions approximator [1] and they tial data. One key characteristic of RNNs is the use of shared can represent any function. CNNs are a type of neural network parameters across all sequence. Instead of having a different that was inspired on convolution operations and was specially set of parameters to process each sequence step, the same set designed to be used with data that has a grid-like topology. is used across all sequence, allowing the model to generalize RNNs are specifically designed to deal with sequential tasks, across sequences not seen during training. Parameter sharing due to the recurrent connections that they have. is also important when a specific piece of information can A. Convolution Neural Network occur at multiple positions within the sequence. The parameter CNNs are a family of neural networks that uses convolution sharing used in recurrent networks relies on the assumption operation in place of general matrix multiplication, in at least that the same parameters can be used for different time steps. on of their layers. The typical convolution operation applied RNNs can be formally introduced as a set of operations in CNNs is shown in equation 1, where I is the input and K represented by a directed acyclic computational graph, as in is known as the kernel. The output is refereed as the feature Figure 1. The recursive operation in a RNN is represented by h(t) x(t) map. equation 2, where is the hidden state and the input at step t. The additional layers seen in Figure 1 adds further transformations to the data. X X S(i; j) = (I∗K)(i; j) = I(m; n)K(i−m; j−n) (1) (t) (t−1) (t) m n h = f(h ; x ; θ) (2) Convolution operation leverages three important aspects that When the recurrent network is trained to perform a task can help improving a machine learning system: sparse inter- that requires predicting the next step based on previous values, actions, parameters sharing and equivariant representations. the network typically learns to use the hidden state, h(t), as Convolution also provides a way of working with variable a summary of task-relevant aspects from the past sequence input sizes. In shallow neural networks every input interacts input. with every output, but that does not happen in CNNs. For example, when processing an image, the input might have thousands or millions of pixels, but it is possible to detect small, meaningful features, such as edges, with kernels that occupy just tens or hundreds of pixels. This means that it is needed to store less parameters, which both reduces the memory requirements of the model and improves its statistical efficiency.
Recommended publications
  • Improving Gated Recurrent Unit Predictions with Univariate Time Series Imputation Techniques
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 12, 2019 Improving Gated Recurrent Unit Predictions with Univariate Time Series Imputation Techniques 1 Anibal Flores Hugo Tito2 Deymor Centty3 Grupo de Investigación en Ciencia E.P. Ingeniería de Sistemas e E.P. Ingeniería Ambiental de Datos, Universidad Nacional de Informática, Universidad Nacional Universidad Nacional de Moquegua Moquegua, Moquegua, Perú de Moquegua, Moquegua, Perú Moquegua, Perú Abstract—The work presented in this paper has its main Similarly to the analysis performed in [1] for LSTM objective to improve the quality of the predictions made with the predictions, Fig. 1 shows a 14-day prediction analysis for recurrent neural network known as Gated Recurrent Unit Gated Recurrent Unit (GRU). In the first case, the LANN (GRU). For this, instead of making different adjustments to the algorithm is applied to a 1 NA gap-size by rebuilding the architecture of the neural network in question, univariate time elements 2, 4, 6, …, 12 of the GRU-predicted series in order to series imputation techniques such as Local Average of Nearest outperform the results. In the second case, LANN is applied for Neighbors (LANN) and Case Based Reasoning Imputation the elements 3, 5, 7, …, 13 in order to improve the results (CBRi) are used. It is experimented with different gap-sizes, from produced by GRU. How it can be appreciated GRU results are 1 to 11 consecutive NAs, resulting in the best gap-size of six improve just in the second case. consecutive NA values for LANN and for CBRi the gap-size of two NA values.
    [Show full text]
  • Sentiment Analysis with Gated Recurrent Units
    Advances in Computer Science and Information Technology (ACSIT) Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015 pp. 59-63 © Krishi Sanskriti Publications http://www.krishisanskriti.org/acsit.html Sentiment Analysis with Gated Recurrent Units Shamim Biswas1, Ekamber Chadda2 and Faiyaz Ahmad3 1,2,3Department of Computer Engineering Jamia Millia Islamia New Delhi, India E-mail: [email protected], 2ekamberc @gmail.com, [email protected] Abstract—Sentiment analysis is a well researched natural language learns word embeddings from unlabeled text samples. It learns processing field. It is a challenging machine learning task due to the both by predicting the word given its surrounding recursive nature of sentences, different length of documents and words(CBOW) and predicting surrounding words from given sarcasm. Traditional approaches to sentiment analysis use count or word(SKIP-GRAM). These word embeddings are used for frequency of words in the text which are assigned sentiment value by some expert. These approaches disregard the order of words and the creating dictionaries and act as dimensionality reducers in complex meanings they can convey. Gated Recurrent Units are recent traditional method like tf-idf etc. More approaches are found form of recurrent neural network which have the ability to store capturing sentence level representations like recursive neural information of long term dependencies in sequential data. In this tensor network (RNTN) [2] work we showed that GRU are suitable for processing long textual data and applied it to the task of sentiment analysis. We showed its Convolution neural network which has primarily been used for effectiveness by comparing with tf-idf and word2vec models.
    [Show full text]
  • Arxiv:1910.10202V2 [Cs.LG] 6 Aug 2021 Its Richer Representational Capacity
    COMPLEX TRANSFORMER: A FRAMEWORK FOR MODELING COMPLEX-VALUED SEQUENCE Muqiao Yang*, Martin Q. Ma*, Dongyu Li*, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov Carnegie Mellon University, Pittsburgh, PA, USA fmuqiaoy, qianlim, dongyul, yaohungt, [email protected] ABSTRACT model because of their capability of looking at a more ex- tended range of input contexts and representing those in While deep learning has received a surge of interest in a va- different subspaces. Attention is, therefore, promising for riety of fields in recent years, major deep learning models building a complex-valued model capable of analyzing high- barely use complex numbers. However, speech, signal and dimensional data with long temporal dependency. We in- audio data are naturally complex-valued after Fourier Trans- troduce a Complex Transformer to solve complex-valued form, and studies have shown a potentially richer represen- sequence modeling tasks, including prediction and genera- tation of complex nets. In this paper, we propose a Com- tion. The Complex Transformer adapts complex representa- plex Transformer, which incorporates the transformer model tions and operations into the transformer network. We test as a backbone for sequence modeling; we also develop at- the model with MusicNet, a dataset for music transcription tention and encoder-decoder network operating for complex [14], and a complex high-dimensional time series In-phase input. The model achieves state-of-the-art performance on Quadrature (IQ) signal dataset. The specific contributions of the MusicNet dataset and an In-phase Quadrature (IQ) sig- our work are as follows: nal dataset. The GitHub implementation to reproduce the ex- Our Complex Transformer achieves state-of-the-art re- perimental results is available at https://github.com/ sults on the MusicNet dataset [14], a dataset of classical mu- muqiaoy/dl_signal.
    [Show full text]
  • Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging
    Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging Yong Xu Qiuqiang Kong Qiang Huang Wenwu Wang Mark D. Plumbley Center for Vision, Speech and Sigal Processing University of Surrey, Guildford, UK Email: fyong.xu, q.kong, q.huang, w.wang, [email protected] Abstract—Environmental audio tagging is a newly proposed Fourier basis. Recent research [10] suggests that the Fourier task to predict the presence or absence of a specific audio event basis sets may not be optimal and better basis sets can be in a chunk. Deep neural network (DNN) based methods have been learned from raw waveforms directly using a large set of audio successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional data. To learn the basis automatically, convolutional neural neural network (CNN) to extract robust features from mel-filter network (CNN) is applied on the raw waveforms which is banks (MFBs), spectrograms or even raw waveforms for audio similar to CNN processing on the pixels of the image [13]. tagging. Gated recurrent unit (GRU) based recurrent neural Processing raw waveforms has seen many promising results networks (RNNs) are then cascaded to model the long-term on speech recognition [10] and generating speech and music temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial [14], with less research in non-speech sound processing. features of stereo recordings. We evaluate our proposed methods Most audio tagging systems [8], [15], [16], [17] use mono on Task 4 (audio tagging) of the Detection and Classification channel recordings, or simply average the multi-channels as of Acoustic Scenes and Events 2016 (DCASE 2016) challenge.
    [Show full text]
  • Gate Recurrent Unit, Long Short-Term Memory
    GATE RECURRENT UNIT, LONG SHORT-TERM MEMORY Asst.Prof.Dr.Supakit Nootyaskool IT-KMITL Topics • Concept of Gate Recurrent Unit • Concept of Long Short-Term Memory Unit • Modify trainr() for GRU and LSTM • Development trainr() • Example LSTM in C lanugage REVIEW RECURRENT NEURAL NETWORK Define vectors 0 0 1 0 1 0 1 0 0 1 0 0 1 NN NN 0 1 1 0 0 NN 1 0 0 0 1 NN 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 Driving Schedule 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 Monday 0 0 1 0 0 1 1 0 0 1 0 Yesterday 0 1 0 Today 0 1 0 0 1 Driving on Thursday 0 0 1 0 1 0 0 0 1 1 0 0 Monday 1 0 0 1 0 1 Driving on Thursday 0 0 1 0 1 0 0 0 1 1 0 0 Monday 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 Driving on Thursday 0 0 1 0 1 0 0 0 1 1 0 0 Monday 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 RNN 1 0 0 1 0 1 0 0 1 1 0 y = label output 0 0 1 0 0 1 0 0 1 RNN 1 0 0 h = hidden activation x = Feature vector 1 0 1 0 0 1 1 0 RNN RNN [Wh] [W1; h0] [bh] RNN [Wh] [W1; h0] [bh] RNN y1 h1 RNN y1 [Wy] [h1] [by] h1 Softmax z = seq(0,5,by=0.2) softmax <- exp(z)/sum(exp(z)) plot(z,softmax,type='l') RNNs RNN usages "1" RNN "a" • Mapping sequence X and Y RNN "b" • Sentiment analysis "2" the product is a good quality and spending long "3" RNN "c" time for the delivery process.
    [Show full text]
  • Hate Speech Detection for Indonesia Tweets Using Word Embedding and Gated Recurrent Unit
    IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol.13, No.1, January 2019, pp. 43~52 ISSN (print): 1978-1520, ISSN (online): 2460-7258 DOI: https://doi.org/10.22146/ijccs.40125 43 Hate Speech Detection for Indonesia Tweets Using Word Embedding And Gated Recurrent Unit Junanda Patihullah*1, Edi Winarko2 1Program Studi S2 Ilmu Komputer FMIPA UGM, Yogyakarta, Indonesia 2Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta, Indonesia e-mail: *[email protected], [email protected] Abstrak Media sosial telah mengubah cara orang dalam mengekspresikan pemikiran dan suasana hati. Seiring meningkatnya aktifitas pengguna sosial media, tidak menutup kemungkinan tindak kejahatan penyebaran ujaran kebencian dapat menyebar secara cepat dan meluas. Sehingga tidak memungkinkan untuk mendeteksi ujaran kebencian secara manual. Metode Gated Recurrent Unit (GRU) adalah salah satu metode deep learning yang memiliki kemampuan mempelajari hubungan informasi dari waktu sebe- lumnya dengan waktu sekarang. Pada penelitian ini fitur ekstraksi yang digunakan ada- lah word2vec, karena memiliki kemampuan mempelajari semantik antar kata. Pada penelitian ini kinerja metode GRU dibandingkan dengan metode supervised lainnya seperti Support Vector Machine, Naive Bayes, Random Forest dan Regresi logistik. Hasil yang didapat menunjukkan akurasi terbaik dari GRU dengan fitur word2vec ada- lah sebesar 92,96%. Penggunaan word2vec pada metode pembanding memberikan hasil akurasi yang lebih rendah dibandingkan dengan penggunaan fitur TF dan TF- IDF. Kata kunci—Gated Recurrent Unit, hate speech, word2vec, RNN, Word Embedding Abstract Social media has changed the people mindset to express thoughts and moods. As the activity of social media users increases, it does not rule out the possibility of crimes of spreading hate speech can spread quickly and widely.
    [Show full text]
  • Gated Recurrent Neural Network and Capsule Network Based Approach for Implicit Emotion Detection
    Sentylic at IEST 2018: Gated Recurrent Neural Network and Capsule Network Based Approach for Implicit Emotion Detection Prabod Rathnayaka, Supun Abeysinghe, Chamod Samarajeewa Isura Manchanayake, Malaka Walpola Department of Computer Science and Engineering University of Moratuwa, Sri Lanka fprabod.14,supun.14,chamod.14,isura.14,[email protected] Abstract ing emojis or hashtags present in the text i.e. dis- tance supervision techniques (Felbo et al., 2017). In this paper, we present the system we have However, these features can be unreliable due to used for the Implicit WASSA 2018 Implicit noise, thus affect the accuracy of the results. Emotion Shared Task. The task is to pre- dict the emotion of a tweet of which the ex- Although explicit words related to emotions plicit mentions of emotion terms have been re- (happy, sad, etc.) in a document directly affect the moved. The idea is to come up with a model emotion detection task, other linguistic features which has the ability to implicitly identify the play a major role as well. Implicit Emotion Recog- emotion expressed given the context words. nition Shared Task introduced in Klinger et al. We have used a Gated Recurrent Neural Net- (2018) aims at developing models which can clas- work (GRU) and a Capsule Network based sify a text into one of the emotions; Anger, Fear, model for the task. Pre-trained word embed- dings have been utilized to incorporate con- Sadness, Joy, Surprise, Disgust without having ac- textual knowledge about words into the model. cess to an explicit mention of an emotion word.
    [Show full text]
  • Learning Over Long Time Lags
    Learning Over Long Time Lags Hojjat Salehinejad University of Ontario Institute of Technology [email protected] Abstract The advantage of recurrent neural networks (RNNs) in learning dependencies between time-series data has distinguished RNNs from other deep learning models. Recently, many advances are proposed in this emerging field. However, there is a lack of comprehensive review on memory models in RNNs in the literature. This paper provides a fundamental review on RNNs and long short term memory (LSTM) model. Then, provides a surveys of recent advances in different memory enhancements and learning techniques for capturing long term dependencies in RNNs. Keywords: Long-short term memory, Long-term dependency, Recurrent neural networks, Time-series data. 1. Introduction With the explosion of large data sets, known as “big data”, the conventional machine learning methods have hardship to process data for further processing and decision making tasks. The development of computational machines such as cluster computers and graphical processing units (GPUs) have facilitated advances in novel machine learning methods, such as deep neural networks (ANNs). The multi-layer perceptron artificial neural networks (MLP-ANNs) are promising methods for non-linear temporal applications [37]. Deep learning in neural networks is a representation technique with the ability of receiving input data and finding its representation for further processing and decision making. Such machines are made from non-linear but simple units, which can provide different levels of data representation through their multi-layer architecture. The higher layers provide a more abstract representation of data and suppresses irrelevant variations [33]. Many naturally occurring phenomena are complex and non-local sequences such as music, speech, or human motion are inherently sequential [7].
    [Show full text]
  • Email Spam Classification Using Gated Recurrent Unit and Long Short-Term Memory
    Journal of Computer Science Original Research Paper Email Spam Classification Using Gated Recurrent Unit and Long Short-Term Memory Iqbal Basyar, Adiwijaya and Danang Triantoro Murdiansyah School of Computing, Telkom University, Bandung, Indonesia Article history Abstract: High numbers of spam emails have led to an increase in email Received: 09-08-2019 triage, causing losses amounting to USD 355 million per year. One way to Revised: 06-01-2020 reduce this loss is to classify spam email into categories including fraud or Accepted: 02-04-2020 promotions made by unwanted parties. The initial development of spam email classification was based on simple methods such as word filters. Corresponding Author: Danang Triantoro Murdiansyah Now, more complex methods have emerged such as sentence modeling School of Computing, Telkom using machine learning. Some of the most well-known methods for dealing University, Bandung Indonesia with the problem of text classification are networks with Long Short-Term Email: [email protected] Memory (LSTM) and Gated Recurrent Units (GRU). This study focuses on the classification of spam emails, so both the LTSM and GRU methods were used. The results of this study show that, under the scenario without dropout, the LSTM and GRU obtained the same accuracy value of 0.990183, superior to XGBoost, the base model. Meanwhile, in the dropout scenario, LSTM outperformed GRU and XGboost with each obtaining an accuracy of 98.60%, 98.58% and 98.52%, respectively. The GRU recall score was better than that of LSTM and XGBoost in the scenario with dropouts, each obtaining values of 98.98%, 98.92% and 98.15% respectively.
    [Show full text]
  • A Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion
    information Article A Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion Uche Onyekpe 1,*, Vasile Palade 1 , Stratis Kanarachos 2 and Stavros-Richard G. Christopoulos 2 1 Research Centre for Data Science, Coventry University, Coventry CV1 5FB, UK; [email protected] 2 Faculty of Engineering and Computing, Coventry University, Coventry CV1 5FB, UK; [email protected] (S.K.); [email protected] (S.-R.G.C.) * Correspondence: [email protected] Abstract: Recurrent Neural Networks (RNNs) are known for their ability to learn relationships within temporal sequences. Gated Recurrent Unit (GRU) networks have found use in challenging time-dependent applications such as Natural Language Processing (NLP), financial analysis and sensor fusion due to their capability to cope with the vanishing gradient problem. GRUs are also known to be more computationally efficient than their variant, the Long Short-Term Memory neural network (LSTM), due to their less complex structure and as such, are more suitable for applications requiring more efficient management of computational resources. Many of such applications require a stronger mapping of their features to further enhance the prediction accuracy. A novel Quaternion Gated Recurrent Unit (QGRU) is proposed in this paper, which leverages the internal and external dependencies within the quaternion algebra to map correlations within and across multidimensional features. The QGRU can be used to efficiently capture the inter- and intra-dependencies within multidimensional features unlike the GRU, which only captures the dependencies within the se- quence. Furthermore, the performance of the proposed method is evaluated on a sensor fusion problem involving navigation in Global Navigation Satellite System (GNSS) deprived environments as well as a human activity recognition problem.
    [Show full text]
  • Bidirectional Gated Recurrent Unit Neural Network for Chinese Address Element Segmentation
    International Journal of Geo-Information Article Bidirectional Gated Recurrent Unit Neural Network for Chinese Address Element Segmentation Pengpeng Li 1,2, An Luo 2,3,*, Jiping Liu 1,2, Yong Wang 1,2, Jun Zhu 1, Yue Deng 4 and Junjie Zhang 3 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China; [email protected] (P.L.); [email protected] (J.Z.) 2 Research Center of Government GIS, Chinese Academy of Surveying and Mapping, Beijing 100830, China; [email protected] (J.L.); [email protected] (Y.W.) 3 School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China; [email protected] 4 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China; [email protected] * Correspondence: [email protected] Received: 10 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: Chinese address element segmentation is a basic and key step in geocoding technology, and the segmentation results directly affect the accuracy and certainty of geocoding. However, due to the lack of obvious word boundaries in Chinese text, the grammatical and semantic features of Chinese text are complicated. Coupled with the diversity and complexity in Chinese address expressions, the segmentation of Chinese address elements is a substantial challenge. Therefore, this paper proposes a method of Chinese address element segmentation based on a bidirectional gated recurrent unit (Bi-GRU) neural network. This method uses the Bi-GRU neural network to generate tag features based on Chinese word segmentation and then uses the Viterbi algorithm to perform tag inference to achieve the segmentation of Chinese address elements.
    [Show full text]
  • Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting
    energies Article Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting Yusen Wang 1, Wenlong Liao 2,* and Yuqing Chang 2 1 School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; [email protected] 2 Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China; [email protected] * Correspondence: [email protected] Received: 19 July 2018; Accepted: 15 August 2018; Published: 18 August 2018 Abstract: Photovoltaic power has great volatility and intermittency due to environmental factors. Forecasting photovoltaic power is of great significance to ensure the safe and economical operation of distribution network. This paper proposes a novel approach to forecast short-term photovoltaic power based on a gated recurrent unit (GRU) network. Firstly, the Pearson coefficient is used to extract the main features that affect photovoltaic power output at the next moment, and qualitatively analyze the relationship between the historical photovoltaic power and the future photovoltaic power output. Secondly, the K-means method is utilized to divide training sets into several groups based on the similarities of each feature, and then GRU network training is applied to each group. The output of each GRU network is averaged to obtain the photovoltaic power output at the next moment. The case study shows that the proposed approach can effectively consider the influence of features and historical photovoltaic power on the future photovoltaic power output, and has higher accuracy than the traditional methods. Keywords: photovoltaic power forecasting; GRU network; Pearson coefficient; K-means 1. Introduction With the reduction of fossil energy supply and increased environmental pollution, the utilization of renewable energy to achieve sustainable and healthy development of the economy has become the consensus of countries all around the world.
    [Show full text]