Hyperthermophilic Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

Hyperthermophilic Microorganisms FEMS Microbiology Reviews 75 (1990) 117-124 Published by Elsevier FEMSRE 00133 Hyperthermophilic microorganisms K.O. Steuer, G. Fiala, G. Huber, R. Huber and A. Segerer Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, F.R.G. Key words: Hyperthermophiles; Taxonomy 1. INTRODUCTION 7 to 9) rich in NaCl. Also man-made hot environ• ments such as the boiling outflows of geothermal The most extremely thermophilic living beings power plants are suitable environments for hyper• known to date are bacteria growing at tempera• thermophiles [9]. Submarine hydrothermal systems tures between 80 and 110 °C [1-3]. Some of them are slightly acidic to alkaline (pH 5 to 8.5) and are so well adapted to the high temperatures that normally contain high amounts of NaCl and SO4 ~ they do not even grow below 80 ° C [4]. As a rule, due to the presence of sea water (Table 1). Due to non of these hyperthermophilic bacteria are able the low solubility of oxygen at high temperatures to grow at 60 ° C or below. Hyperthermophiles are and the presence of reducing gases, most biotopes occurring mainly within the archaebacterial king• of hyperthermophiles are anaerobic. Within con• dom [5]; some of them are also present within the tinental solfataric fields, oxygen is only present eubacteria [6,7]. Due to their existence within within the upper acidic layer which appears phylogenetically highly divergent groups, the lack ochre-coloured due to the existence of ferric iron of closely related mesophiles, and their biotopes [8]. existing already since the Archean age, hyperther• Although not growing below 60 °C, hyperther• mophiles may have adapted to the hot environ• mophiles are able to survive at low temperatures ment already billions of years ago. at least for years. Some of the anaerobic hyper• thermophiles are able to tolerate oxygen much better at low (non-growth) temperatures than at 2. BIOTOPES high (growth) temperatures. This property may be essential for dispersal of these organisms through The hyperthermophilic bacteria known at pre• oxygen-rich low-temperature areas. sent have been isolated from submarine hydro- thermal areas and from continental solfataras. The surface of the solfataras is usually rich in sulfate 3. TAXONOMY OF HYPERTHERMOPHILIC and exhibits an acidic pH (0.5 to 6; [1,2]). In the BACTERIA depth, solfataras are less acidic or even neutral Up to now, about 35 different species of hyper• (pH 5 to 7; [8]). Sometimes, solfataric fields may thermophilic bacteria are known. They belong to also contain some weakly alkaline hot springs (pH different taxa within the eu- and archaebacteria (Table 2). Within the eubacteria, hyperthermo• philes are within the Thermotogales order, which Correspondence to: K.O. Steuer, Lehrstuhl für Mikrobiologie, is the deepest phylogenetic branch-off based on Institute for Biochemistry, Genetics and Microbiology, Univer• sity of Regensburg, Universitätsstr. 31, P.O. Box 397, D-8400 16S rRNA sequences within this kingdom [7]. The Regensburg, F.R.G. phylogenetic tree within the archaebacterial king- 0168-6445/90/S03.50 © 1990 Federation of European Microbiological Societies dorn exhibits two main branches: the branch con• S° and S2", forming sulfuric acid (Table 3, 4). taining methanogens and halophiles and the Many Sulfolobus isolates are facultative hetero- branch of the sulfur metabolizing archaebacteria trophs and a few, still unnamed, are even strict [7]. The latter consists almost exclusively of hyper• heterotrophs (Stetter, unpublished). The type thermophiles [3,7] while there are only a few groups strain of Sulfolobus acidocaldarius (DSM 639) of hyperthermophiles within the other branch shows excellent growth on organic matter [11]. (Archaeoglobales, Thermococcales, Methano- Autotrophically cultured on S2~ and S°, however, thermaceae, Mc. jannaschii). Within the sulfur this strain shows only extremely weak growth and metabolizers, acidophilic (e.g. Sulfolobus, Metal- sulfuric acid formation [12-14]. Some members of losphaera, Acidianus) and neutrophilic (e.g. Pyro- the Sulfolobales like Metallosphaera sedula are dictium, Desulfurococcus, Staphylothermus, Ther- able to oxidize sulfidic ores like pyrite, chal- mococcus) genera were discovered during the last copyrite and sphalerite, forming sulfuric acid and years. Therefore, the old designation "Thermo- solubilizing the heavy metal ions (Table 3,4; [15]). acidophiles" which was primarily used to char• Under microaerophilic conditions, Sulfolobus is acterize the genera Sulfolobus and Thermoplasma able to reduce ferric iron and molybdate, which [1] is not suitable anymore for the designation of therefore act as electron acceptors under these this branch. conditions [16,17]. Members of the genus Sulfolo• bus grow only at very low ionic strength and were 3.1. Extremely acidophilic hyperthermophiles therefore not found within the marine environ• Extremely acidophilic hyperthermophiles were ment ([11]; Segerer and Stetter, unpublished). found up to now exclusively within continental Members of the genus Acidianus similar to solfataric fields. The organisms are coccoid-shaped Sulfolobus are able to grow by oxidation of S°, strict and facultative aerobes. They are extreme forming sulfuric acid [18,19]. Some strains grow acidophiles due to their requirement of acidic pH also on sulfidic ores, but much less efficient than (opt. approx. pH 3). Phylogenetically, they belong Metallosphaera (Table 4; [14]). In addition, mem• to the archaebacterial genera Sulfolobus, Metal- bers of Acidianus are able to grow by anaerobic losphaera, Acidianus, and Desulfurolobus. The less oxidation of H2, using S° as electron donor (Table extremely thermophilic archaebacterium Thermo• 4; [18]). A thermoacidophilic isolate, which had plasma is an extreme acidophile, too. It is a facul• been tentatively named "Sulfolobus ambiualens" tative anaerobe occurring both in smoldering coal [20] was later described as Desulfurolobus am- refuse piles and continental solfataric fields [1,10]. bivafens, representing a new genus [21]. By Members of the genus Sulfolobus are strict DNA : DNA hybridization, however, Desulfurolo• aerobes growing autotrophically by oxidation of bus ambivalens shows a close relationship to the Table 1 Biotopes of hyperthermophilic bacteria Characteristics Type of thermal area Solfataric fields Submarine hydrothermal systems Sites Steam-heated mud holes. Hot sediments and vents soils and surface waters; deep hot springs; geo- thermal power plants Temperatures Up to 100°C Up to about 374 °C pH 0.5 to 9 5 to 8.5 Presence of 02 Surface oxic; depth anoxic Anoxic 2_ + 2 Major gases and C02, CO, CH4, S04 , NH4 H2, H2S,S°,S03 - sulfur compounds 3.2. Slightly acidophilic and neutrophilic hyperther• Taxonomy of hyperthermophilic archaebäcteria mophiles Order Genus Species Slightly acidophilic and neutrophilic hyperther• mophiles were found both in continental solfataric I. Eubacteria! kingdom Thermotogales Thermotoga T. maritima fields and in submarine hydrothermal systems and T. neapolitana they show specific adaptations to their environ• T. thermarum ments. All of them are strict anaerobes. Solfataric Thermosipho 8 T. africanus fields contain members of the genera Thermopro• 8 Fervidobacterium F. nodosum teus, Pyrobaculum, Thermofilum, Desulfurococcus, F. islandicum and Methanothermus (Table 3; [9,23-26]). Cells of II. Archaebacterial kingdom members of the genera Thermoproteus, Pyrobacu• Sulfolobales Sulfolobus S. acidocaldarius lum, and Thermofilum are characteristically stiff S. solfataricus rods with protruding spheres ("golf clubs") mainly Metallosphaera M. sedula Acidianus A. infernus at their ends, possibly due to a mode of budding. A. brierleyi 8 Cells of Thermofilum are only about 0.17 to 0.35 Desulfurolobus D. ambiualens /im in width and are therefore different from Thermoproteales Thermoproteus T. tenax Thermoproteus and Pyrobaculum. Thermoproteus T. neutrophifus tenax, Thermoproteus neutrophilus and Pyrobacu• Pyrobaculum P. islandicum P. organotrophum lum islandicum are able to grow autotrophically by Thermofilum T. pendens anaerobic reduction of S° with H2 as electron T. librum donor [9,27]. Strains of Thermofilum and Pyro• Desulfurococcus D. mobilis baculum organotrophum are obligate heterotrophs. D. mucosus They are growing by sulfur respiration, using dif• D. saccharovorans Staphylothermus • S. marinus ferent organic substrates (Table 4). Thermofilum Pyrodictialcs Pyrodictium P. occultum pendens shows an obligate requirement for a lipid P. brockii fraction of Thermoproteus tenax. Thermoproteus P. abyssum tenax and Pyrobaculum islandicum are also able to Tliermodiscus T. maritimus grow heterotrophically by sulfur respiration (Ta• Thermococcales Thermococcus T. celer T. stetteri ble 4). Also in solfataric fields coccoid hetero• Fyrococcus P. furiosus trophic organisms occur which gain energy by P. woésii respiring organic material using sulfur as electron Archaeoglobales Archaeoglobus A. fulgidus acceptor. They belong to the genus Desulfurococ• A. profundus cus [25]. From solfataras in the southwest of Ice• Thermoplasmales 8 Thermoplasma T. acidophilum land, rod-shaped methanogens growing at temper• T. volcanium Methanobacteriales b Methanothermus M. fervidus atures up to 97 °C (Table 3) were isolated [26,28]. M. sociabilis Two species are known: Methanothermus fervidus Methanococcales Methanococcus b M. thermolitho- and Methanothermus sociabilis, cells of the latter 8 trap hi cus growing in clusters up to 3 mm. Both species are M. jannaschii strict
Recommended publications
  • Methanothermus Fervidus Type Strain (V24S)
    UC Davis UC Davis Previously Published Works Title Complete genome sequence of Methanothermus fervidus type strain (V24S). Permalink https://escholarship.org/uc/item/9367m39j Journal Standards in genomic sciences, 3(3) ISSN 1944-3277 Authors Anderson, Iain Djao, Olivier Duplex Ngatchou Misra, Monica et al. Publication Date 2010-11-20 DOI 10.4056/sigs.1283367 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:315-324 DOI:10.4056/sigs.1283367 Complete genome sequence of Methanothermus fervidus type strain (V24ST) Iain Anderson1, Olivier Duplex Ngatchou Djao2, Monica Misra1,3, Olga Chertkov1,3, Matt Nolan1, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Evelyne Brambilla4, Amy Chen5, Krishna Palaniappan5, Miriam Land1,6, Loren Hauser1,6, Yun-Juan Chang1,6, Cynthia D. Jeffries1,6, Johannes Sikorski4, Stefan Spring4, Manfred Rohde2, Konrad Eichinger7, Harald Huber7, Reinhard Wirth7, Markus Göker4, John C. Detter1, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz5, Philip Hugenholtz1, Hans-Peter Klenk4, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 University of Regensburg, Archaeenzentrum, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]
  • Dominio Archaea
    FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA Nuria Garzón Pinto Facultad de Farmacia Universidad de Sevilla Septiembre de 2017 FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA TRABAJO FIN DE GRADO Nuria Garzón Pinto Tutores: Antonio Ventosa Ucero y Cristina Sánchez-Porro Álvarez Tipología del trabajo: Revisión bibliográfica Grado en Farmacia. Facultad de Farmacia Departamento de Microbiología y Parasitología (Área de Microbiología) Universidad de Sevilla Sevilla, septiembre de 2017 RESUMEN A lo largo de la historia, la clasificación de los seres vivos ha ido variando en función de las diversas aportaciones científicas que se iban proponiendo, y la historia evolutiva de los organismos ha sido durante mucho tiempo algo que no se lograba conocer con claridad. Actualmente, gracias sobre todo a las ideas aportadas por Carl Woese y colaboradores, se sabe que los seres vivos se clasifican en 3 dominios (Bacteria, Eukarya y Archaea) y se conocen las herramientas que nos permiten realizar estudios filogenéticos, es decir, estudiar el origen de las especies. La herramienta principal, y en base a la cual se ha realizado la clasificación actual es el ARNr 16S. Sin embargo, hoy día sedispone de otros métodos que ayudan o complementan los análisis de la evolución de los seres vivos. En este trabajo se analiza cómo surgió el dominio Archaea, se describen las características y aspectos más importantes de las especies este grupo y se compara con el resto de dominios (Bacteria y Eukarya). Las arqueas han despertado un gran interés científico y han sido investigadas sobre todo por su capacidad para adaptarse y desarrollarse en ambientes extremos.
    [Show full text]
  • Orthologs of the Small RPB8 Subunit of the Eukaryotic RNA Polymerases
    Biology Direct BioMed Central Discovery notes Open Access Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" Eugene V Koonin*1, Kira S Makarova1 and James G Elkins2 Address: 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA and 2Microbial Ecology and Physiology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Email: Eugene V Koonin* - [email protected]; Kira S Makarova - [email protected]; James G Elkins - [email protected] * Corresponding author Published: 14 December 2007 Received: 13 December 2007 Accepted: 14 December 2007 Biology Direct 2007, 2:38 doi:10.1186/1745-6150-2-38 This article is available from: http://www.biology-direct.com/content/2/1/38 © 2007 Koonin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract : Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.
    [Show full text]
  • Phylogeny and Taxonomy of Archaea: a Comparison of the Whole-Genome-Based Cvtree Approach with 16S Rrna Sequence Analysis
    Life 2015, 5, 949-968; doi:10.3390/life5010949 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis Guanghong Zuo 1, Zhao Xu 2 and Bailin Hao 1;* 1 T-Life Research Center and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; E-Mail: [email protected] 2 Thermo Fisher Scientific, 200 Oyster Point Blvd, South San Francisco, CA 94080, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-21-6565-2305. Academic Editors: Roger A. Garrett, Hans-Peter Klenk and Michael W. W. Adams Received: 9 December 2014 / Accepted: 9 March 2015 / Published: 17 March 2015 Abstract: A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.
    [Show full text]
  • Implantation Du Microbiote Et Mise En Place Des Fonctions Du Rumen Chez Le Veau De Race Laitière Et Effet De La Supplémentation En Levures Vivantes
    En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mickael Rey Le : 15 novembre 2012 Titre : Implantation du microbiote et mise en place des fonctions du rumen chez le veau de race laitière et effet de la supplémentation en levures vivantes Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 1289 INRA-INP/ENSAT-ENVT ‘TANDEM’ Directeur(s) de Thèse : Valérie Monteils Francis Enjalbert Rapporteurs : Evelyne Forano Véronique Julliand Membre(s) du jury: Evelyne Forano Véronique Julliand Gérard Fonty Valérie Monteils Francis Enjalbert 1 2 REMERCIEMENTS Ce manuscrit de thèse vient clôturer une belle expérience scientifique et humaine qui a été réalisée au sein de l’UMR 1289 TANDEM (Tissus Animaux, Nutrition, Digestion, Ecosystème, Métabolisme). Pour cela, je souhaiterai remercier toutes les personnes ayant contribué de près ou de loin à l’aboutissement de ce projet. Je tiens à remercier les personnes qui ont accepté de participer à mon jury de thèse : Evelyne Forano (Unité de Microbiologie, INRA, Clermont-Ferrand-Theix), Véronique Julliand (AgroSup Dijon, D2A2E, URANIE-USC INRA Nutrition du cheval athlète, Dijon), pour m’avoir fait l’honneur d’être rapporteurs de cette thèse. Mais aussi Gérard Fonty (Microorganismes : Génome et Environnement, CNRS, Aubière Cedex. France) pour avoir accepté de participer à ce jury et m’avoir fait l’honneur d’en être le président. Je tiens à remercier mes directeurs de thèse, Francis Enjalbert et Valérie Monteils pour leurs encadrements et leurs qualités scientifiques et pédagogiques qui m’ont permis de structurer mon travail au cours de ces trois années.
    [Show full text]
  • Structure and Function of Archaeal Histones
    REVIEW Structure and function of archaeal histones Bram Henneman1, Clara van Emmerik1¤, Hugo van Ingen1¤, Remus T. Dame1,2* 1 Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands, 2 Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands ¤ Current address: Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands * [email protected] Abstract The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modi- fications of the histones, which occur mostly on their N-terminal tails, define the functional a1111111111 state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are a1111111111 believed to be involved in the compaction and organization of their genomes. Instead of dis- a1111111111 crete multimers, in vivo data suggest assembly of ªnucleosomesº of variable size, consisting a1111111111 of multiples of dimers, which are able to induce repression of transcription. Based on these a1111111111 data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into ªendlessº hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, OPEN ACCESS which are expected to be unable to assemble into hypernucleosomes. Finally, we identify Citation: Henneman B, van Emmerik C, van Ingen atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar H, Dame RT (2018) Structure and function of to the tails of eukaryotic histones, which are subject to post-translational modification.
    [Show full text]
  • Bibliography
    Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me­ filamentous phototrophic bacteria in holomictic freshwater lakes. Hy­ thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap­ Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam­ pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac­ Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep­ of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano­ 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti­ the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther­ 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B.
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Biotechnology of Archaea- Costanzo Bertoldo and Garabed Antranikian
    BIOTECHNOLOGY– Vol. IX – Biotechnology Of Archaea- Costanzo Bertoldo and Garabed Antranikian BIOTECHNOLOGY OF ARCHAEA Costanzo Bertoldo and Garabed Antranikian Technical University Hamburg-Harburg, Germany Keywords: Archaea, extremophiles, enzymes Contents 1. Introduction 2. Cultivation of Extremophilic Archaea 3. Molecular Basis of Heat Resistance 4. Screening Strategies for the Detection of Novel Enzymes from Archaea 5. Starch Processing Enzymes 6. Cellulose and Hemicellulose Hydrolyzing Enzymes 7. Chitin Degradation 8. Proteolytic Enzymes 9. Alcohol Dehydrogenases and Esterases 10. DNA Processing Enzymes 11. Archaeal Inteins 12. Conclusions Glossary Bibliography Biographical Sketches Summary Archaea are unique microorganisms that are adapted to survive in ecological niches such as high temperatures, extremes of pH, high salt concentrations and high pressure. They produce novel organic compounds and stable biocatalysts that function under extreme conditions comparable to those prevailing in various industrial processes. Some of the enzymes from Archaea have already been purified and their genes successfully cloned in mesophilic hosts. Enzymes such as amylases, pullulanases, cyclodextrin glycosyltransferases, cellulases, xylanases, chitinases, proteases, alcohol dehydrogenase,UNESCO esterases, and DNA-modifying – enzymesEOLSS are of potential use in various biotechnological processes including in the food, chemical and pharmaceutical industries. 1. Introduction SAMPLE CHAPTERS The industrial application of biocatalysts began in 1915 with the introduction of the first detergent enzyme by Dr. Röhm. Since that time enzymes have found wider application in various industrial processes and production (see Enzyme Production). The most important fields of enzyme application are nutrition, pharmaceuticals, diagnostics, detergents, textile and leather industries. There are more than 3000 enzymes known to date that catalyze different biochemical reactions among the estimated total of 7000; only 100 enzymes are being used industrially.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]
  • Productivity and Community Composition of Low Biomass/High Silica Precipitation Hot Springs: a Possible Window to Earth’S Early Biosphere?
    life Article Productivity and Community Composition of Low Biomass/High Silica Precipitation Hot Springs: A Possible Window to Earth’s Early Biosphere? Jeff R. Havig 1,* and Trinity L. Hamilton 2,3 1 Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA 2 Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA 3 BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA * Correspondence: [email protected]; Tel.:+1-(509)-637-6375 Received: 25 April 2019; Accepted: 24 July 2019; Published: 29 July 2019 Abstract: Terrestrial hot springs have provided a niche space for microbial communities throughout much of Earth’s history, and evidence for hydrothermal deposits on the Martian surface suggest this could have also been the case for the red planet. Prior to the evolution of photosynthesis, life in hot springs on early Earth would have been supported though chemoautotrophy. Today, hot spring geochemical and physical parameters can preclude the occurrence of oxygenic phototrophs, providing an opportunity to characterize the geochemical and microbial components. In the absence of the photo-oxidation of water, chemoautotrophy in these hot springs (and throughout Earth’s history) relies on the delivery of exogenous electron acceptors and donors such as H2,H2S, and Fe2+. Thus, systems fueled by chemoautotrophy are likely energy substrate-limited and support low biomass communities compared to those where oxygenic phototrophs are prevalent. Low biomass silica-precipitating systems have implications for preservation, especially over geologic time. Here, we examine and compare the productivity and composition of low biomass chemoautotrophic versus photoautotrophic communities in silica-saturated hot springs.
    [Show full text]
  • Diversity, Ecology and Evolution of Archaea
    REVIEW ARTICLE https://doi.org/10.1038/s41564-020-0715-z Diversity, ecology and evolution of Archaea Brett J. Baker 1 ✉ , Valerie De Anda1, Kiley W. Seitz1, Nina Dombrowski 1, Alyson E. Santoro2 and Karen G. Lloyd 3 Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on cultur- ing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes. nitially, all single-celled, non-eukaryotic microorganisms were 16S rRNA gene sequencing revealed many deeply branching classified as the ‘Prokaryota’1 and, later, the ‘Monera’2. These groups19. This uncultivated diversity is commonly referred to as Iearly classifications lumped Bacteria and Archaea into a single ‘microbial dark matter’. group based primarily on morphology.
    [Show full text]