Modelling the Effects of Climate Change on the Distribution of Endangered Cypripedium Japonicum in China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollination of the Lady's Slipper Cypripedium Henryi Rolfe
Botanical Journal of the Linnean Society, 2008, 156, 491–499. With 2 figures Pollination of the lady’s slipper Cypripedium henryi Rolfe (Orchidaceae) PENG LI2,3, YI-BO LUO1,2*, YIN-XIA DENG2,4 and YONG KOU5 1The National Orchid Conservation Centre, Shenzhen 518114, Guangdong, China 2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 3Graduate School of the Chinese Academy of Sciences, Beijing 100049, China 4Jilin Agriculture University, Changchun 130118, Jilin, China 5Huanglong Administration of National Scenic Spots, Huanglong 623300, Sichuan, China Received 2 November 2005; accepted for publication 22 October 2007 The pollination ecology of Cypripedium henryi Rolfe, a slipper orchid endemic to west China, was investigated, and its floral shape, size, colour, and scent were analysed. Examination of the breeding system suggests that the flowers are self-compatible, but need pollen vectors for successful reproduction. The flower is rewardless; over 15 insects belonging to Araneida, Hymenoptera, Diptera, Lepidoptera, and Coleoptera were recorded as flower visitors, but most only alighted or rested on the flower. In the total 32 h of observations over 2 years, female Lasioglossum bees were found to be the most frequent visitors and the only pollinators. They showed a high visitation frequency and, surprisingly, re-visited the same flowers frequently. Cypripedium henryi probably attracts pollinators visiting the flowers through general food deception (odour components, colour, false nectar guides), as well as special structures (slippery labellum, slippery staminode). Although three Lasioglossum species visited the flowers, only L. sauterum Fan et Ebmer was found with pollen. Lasioglossum flavohirtum Ebmer was large and climbed out from the entrance. -
Parallel Adaptations of Japanese Whiting, Sillago Japonica Under Temperature Stress
Parallel adaptations of Japanese whiting, Sillago japonica under temperature stress Zhiqiang Han1, Xinyu Guo2, Qun Liu2, Shanshan Liu2, Zhixin Zhang3, shijun xiao4, and Tianxiang Gao5 1Affiliation not available 2BGI-Shenzhen 3Tokyo University of Marine Science and Technology Graduate School of Marine Science and Technology 4Tibet Academy of Agricultural and Animal Husbandry Sciences 5Zhejiang Ocean University February 9, 2021 Abstract Knowledge about the genetic adaptations of various organisms to heterogeneous environments in the Northwestern Pacific remains poorly understood. The mechanism by which organisms adapt to temperature in response to climate change must be determined. We sequenced the whole genomes of Sillago japonica individuals collected from different latitudinal locations along the coastal waters of China and Japan to detect the possible thermal adaptations. A total of 5.48 million single nucleotide polymorphisms (SNPs) from five populations revealed a complete genetic break between the China and Japan groups. This genetic structure was partly attributed to geographic distance and local adaptation. Although parallel evolution within species is comparatively rare at the DNA level, the shared natural selection genes between two isolated populations (Zhoushan and Ise Bay/Tokyo Bay) indicated possible parallel evolution at the genetic level induced by temperature. Our result proved that the process of temperature selection on isolated populations is repeatable. Additionally, the candidate genes were functionally related to membrane fluidity in cold environments and the cytoskeleton in high-temperature environments. These results advance our understanding of the genetic mechanisms underlying the rapid adaptations of fish species. Projections of species distribution models suggested that China and Japan groups may have different responses to future climate changes: the former could expand, whereas the latter may contract. -
Book of Abstracts
PICES-2016 25 Year of PICES: Celebrating the Past, Imagining the Future North Pacific Marine Science Organization November 2-13, 2016 San Diego, CA, USA Table of Contents Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 5 Venue Floor Plan � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6 List of Sessions/Workshops � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Meeting Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 10 PICES Structure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 12 PICES Acronyms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 13 Session/Workshop Schedules at a Glance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 15 List of Posters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 47 Sessions and Workshops Descriptions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 63 Abstracts Oral Presentations (ordered by days) � � � � � � � � � � � � � � � � � � � � � -
Predicting Distribution of Zanthoxylum Bungeanum Maxim. in China Zhihang Zhuo1,3, Danping Xu1,2* , Biao Pu2 , Rulin Wang4 and Meng Ye5
Zhuo et al. BMC Ecol (2020) 20:46 https://doi.org/10.1186/s12898-020-00314-6 BMC Ecology RESEARCH ARTICLE Open Access Predicting distribution of Zanthoxylum bungeanum Maxim. in China Zhihang Zhuo1,3, Danping Xu1,2* , Biao Pu2 , Rulin Wang4 and Meng Ye5 Abstract Background: With the growth of economic benefts brought by Zanthoxylum bungeanum Maxim. and the increas- ing market demand, this species has been widely introduced and cultivated in China. It is important to scientifcally select suitable areas for artifcial planting and promotion, and to understand the status and potential of Z. bungeanum resources. Results: The maximum entropy (MaxEnt) model and ArcGIS technologies were used to analyze the climatic suitabil- ity of Z. bungeanum based on known distribution data, combined with environmental data in China. Z. bungeanum was mainly distributed in subtropical and mid-eastern warm temperate regions. The total suitable area (high and medium suitability) accounted for 32% of China’s total land area, with high suitability areas composing larger percent- age, reaching 1.93 106 km2. The suitable range (and optimum value) of the key environmental variables afecting the distribution of ×Z. bungeanum were the maximum temperature in February of 2.8–17.7 °C (10.4 °C), the maximum temperature in March of 8.6–21.4 °C (16.3 °C), the maximum temperature in December of 2.5–17.1 °C (9.9 °C), the maximum temperature in November of 7.7–22.2 °C (14.5 °C) and the mean temperature in March of 3.2–16.2 °C (12.0 °C). -
Looking Beyond the Mortality of Bycatch: Sublethal Effects of Incidental Capture on Marine Animals
Biological Conservation 171 (2014) 61–72 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals a, a a,b b a Samantha M. Wilson ⇑, Graham D. Raby , Nicholas J. Burnett , Scott G. Hinch , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, ON, Canada b Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: There is a widely recognized need to understand and reduce the incidental effects of marine fishing on Received 14 August 2013 non-target animals. Previous research on marine bycatch has largely focused on simply quantifying mor- Received in revised form 10 January 2014 tality. However, much less is known about the organism-level sublethal effects, including the potential Accepted 13 January 2014 for behavioural alterations, physiological and energetic costs, and associated reductions in feeding, growth, or reproduction (i.e., fitness) which can occur undetected following escape or release from fishing gear. We reviewed the literature and found 133 marine bycatch papers that included sublethal endpoints Keywords: such as physiological disturbance, behavioural impairment, injury, reflex impairment, and effects on RAMP reproduction, -
ORGANIC CHEMICAL TOXICOLOGY of FISHES This Is Volume 33 in The
ORGANIC CHEMICAL TOXICOLOGY OF FISHES This is Volume 33 in the FISH PHYSIOLOGY series Edited by Anthony P. Farrell and Colin J. Brauner Honorary Editors: William S. Hoar and David J. Randall A complete list of books in this series appears at the end of the volume ORGANIC CHEMICAL TOXICOLOGY OF FISHES Edited by KEITH B. TIERNEY Department of Biological Sciences University of Alberta Edmonton, Alberta Canada ANTHONY P. FARRELL Department of Zoology, and Faculty of Land and Food Systems The University of British Columbia Vancouver, British Columbia Canada COLIN J. BRAUNER Department of Zoology The University of British Columbia Vancouver, British Columbia Canada AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA Copyright r 2014 Elsevier Inc. All rights reserved The cover illustrates the diversity of effects an example synthetic organic water pollutant can have on fish. The chemical shown is 2,4-D, an herbicide that can be found in streams near urbanization and agriculture. The fish shown is one that can live in such streams: rainbow trout (Oncorhynchus mykiss). The effect shown on the left is the ability of 2,4-D (yellow line) to stimulate olfactory sensory neurons vs. control (black line) (measured as an electro- olfactogram; EOG). The effect shown on the right is the ability of 2,4-D to induce the expression of an egg yolk precursor protein (vitellogenin) in male fish. -
Medicinal, Pharmaceutical and Pharmacological Properties Of
Journal of Pharmacognosy and Phytochemistry 2018; 7(4): 892-900 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(4): 892-900 Medicinal, pharmaceutical and pharmacological Received: 19-05-2018 Accepted: 24-06-2018 properties of Zanthoxylum armatum: A Review Amandeep Paul College of Basic Sciences and Amandeep Paul, Antul Kumar, Gurwinder Singh and Anuj Choudhary Humanities, Department of Botany, Punjab Agricultural Abstract University, Ludhiana, Punjab, Zanthoxylum armatum DC is a sub deciduous aromatic, branched shrub, belongs to family Rutaceae. Its India maximum length up to approximately 5 m with alternate imparipinnate leaves and flowers are small, pale Antul Kumar yellow in colour. It is widely spread in the hot valleys of Himalayas from Jammu to Bhutan, Nepal and College of Basic Sciences and Pakistan. In India, the most part of Orissa and Andhra Pradesh is covered by Z. armatum plants. This Humanities, Department of plant is significantly used to cure stomachic, toothache, carminative, antiseptic and chest infections. This Botany, Punjab Agricultural review has collecting information about its botanical position, morphology, phytochemical and University, Ludhiana, Punjab, pharmacological information on Z armatum. India Various researchers have shown that Zanthoxylum armatum posseses valuable biological and pharmacological activities. A large number of phytochemical compounds such as alkaloid, tennins, Gurwinder Singh amino acids, terpenoids, glycosides are present in the extract of the leaves of Zanthoxylum armatum. This College -
Indigenous Knowledge and Uses of Medicinal Plants in Macchegaun, Nepal
Indian Journal of Traditional Knowledge Vol. 10(2), April 2011, pp. 281-286 Indigenous knowledge and uses of medicinal plants in Macchegaun, Nepal Kunjani Joshi 1*, Ranju Joshi 2 & AR Joshi 2 1 Department of Botany, Patan Multiple Campus, Tribhuvan University, PO Box 2486, Kathmandu, Nepal; 2SchEMS, Pokhara University, Nepal E-mails: [email protected]; [email protected], [email protected] Received: 27.11.2008; revised: 29.04.2010 Based on a field survey, 87 species belonging to 54 families, used by the local people of the Macchegaun, Kathmandu district, Nepal are reported. Local people have remarkable detailed knowledge of species identity, characteristics and their specific uses. These traditional knowledges and practices are disappearing particularly due to unplanned land use change and over-explotation of the species. Some species are under serious threat indicating urgent need of documentation of useful plants with their uses and indigenous practices. An attempt has also been made to recommend some conservation measures for preservation and sustainable uses of these species. Keywords: Ethnobotany, Rural community, Indigenous knowledge, Sustainable use, Conservation IPC Int. Cl. 8: A61K36/00, A61P1/02, A61P1/10, A61P1/14, A61P1/16, A61P5/00, A61P9/14, A61P11/00, A61P17/00, A61P19/00, A61P29/00, A61P31/00, A61P35/00, A61P39/02 The rural communities depend heavily on plant documentation the useful species with their diversity for the fulfillment of their basic needs and sustainable uses, and existing local level indigenous conservation of other natural resources. They collect knowledge, techniques and practices. The study is useful plant resources from various habitats and designed to fill up the gaps and to recommend some utilize them using indigenous knowledge and strategies for sustainable management of the practices. -
Pdf of JHOS July 2013
JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 10 No. 3 (699) July 2013 JOURNAL of the HARDY ORCHID SOCIETY Vol. 10 No. 3 (69) July 2013 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website www.hardyorchidsociety.org.uk , January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal arti - cles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Vice-Chairman: vacant Secretary: Richard Robinson, Rhiw, Church Street, Amberley, Sussex, BN18 9NF [email protected] Treasurer: John Wallington, 17, Springbank, Eversley Park Road, London, N21 1JH [email protected] Membership Secretary: Moira Tarrant, Bumbys, Fox Road, Mashbury, Chelmsford, CM1 4TJ [email protected] Plant Show Secretary: David Hughes, Linmoor Cottage, Highwood, -
2018 Final LOFF W/ Ref and Detailed Info
Final List of Foreign Fisheries Rationale for Classification ** (Presence of mortality or injury (P/A), Co- Occurrence (C/O), Company (if Source of Marine Mammal Analogous Gear Fishery/Gear Number of aquaculture or Product (for Interactions (by group Marine Mammal (A/G), No RFMO or Legal Target Species or Product Type Vessels processor) processing) Area of Operation or species) Bycatch Estimates Information (N/I)) Protection Measures References Detailed Information Antigua and Barbuda Exempt Fisheries http://www.fao.org/fi/oldsite/FCP/en/ATG/body.htm http://www.fao.org/docrep/006/y5402e/y5402e06.htm,ht tp://www.tradeboss.com/default.cgi/action/viewcompan lobster, rock, spiny, demersal fish ies/searchterm/spiny+lobster/searchtermcondition/1/ , (snappers, groupers, grunts, ftp://ftp.fao.org/fi/DOCUMENT/IPOAS/national/Antigua U.S. LoF Caribbean spiny lobster trap/ pot >197 None documented, surgeonfish), flounder pots, traps 74 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G AndBarbuda/NPOA_IUU.pdf Caribbean mixed species trap/pot are category III http://www.nmfs.noaa.gov/pr/interactions/fisheries/tabl lobster, rock, spiny free diving, loops 19 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G e2/Atlantic_GOM_Caribbean_shellfish.html Queen conch (Strombus gigas), Dive (SCUBA & free molluscs diving) 25 not applicable not applicable Antigua & Barbuda EEZ none documented none documented A/G U.S. trade data Southeastern U.S. Atlantic, Gulf of Mexico, and Caribbean snapper- handline, hook and grouper and other reef fish bottom longline/hook-and-line/ >5,000 snapper line 71 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented N/I, A/G U.S. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Medicinal Plants Used Against Gastrointestinal Disorders by The
Botanica Orientalis – Journal of Plant Science (2016) 10: 19–23 ISSN 1726-685819 © 2016 Central Department of Botany, Tribhuvan University Research Medicinal plants used against gastrointestinal disorders by the Tamang people in Rasuwa district, central Nepal Saroj Yadav and Sangeeta Rajbhandary* Central Department of Botany, Tribhuvan University, Nepal Abstract The different ethnic groups dwelling in different phytogeographic belts of Nepal have their own traditional system of knowledge on application of plant resources for health care. The traditional knowledge of using plants is passed on from generation to generation as folklore. Rasuwa district is rich in variety of flora especially medicinal plants and ethnic people (mainly Tamang) are familiar with medicinal resources and possess rich ethno-pharmacological knowledge. These resources provide huge opportunities for community development and livelihood improvement. This paper will present the documentation of medicinal plant used for gastrointestinal disorders in Chilime, Gatlang and Thuman Village Development Committees in Rasuwa district, north-central Nepal. Key-words: ethnobotany, common species, ethnopharmacology. Introduction studies have been conducted in Nepal unravelling the diversity The utilization of plant and plant products as medicine can of species utilized and associated ethnobotanical knowledge be traced as far back as the beginning of human civilization and practices (Rajbhandari 2001; Manandhar 2002; Bhattarai et al. 2006; Malla et al. 2015), but these are not adequate given and this practice has not diminished in any way in recent the extent of biocultural diversity within the country. times (Bhattarai et al. 2006; Ekor 2013). In many societies, Yet to this date, very little information has been recorded the indigenous knowledge about the properties of plants and about the traditional uses of plants from tribal communities, the systems of their utilization has been orally passed for such as Tamang (Luitel et al.