Tulaczyk (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
ARCTIC RIFT COPPER Part of World’S Newest Metallogenic Province: Kiffaanngissuseq
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346029727 ARCTIC RIFT COPPER Part of world’s newest metallogenic province: Kiffaanngissuseq Technical Report · November 2020 DOI: 10.13140/RG.2.2.18610.84161 CITATIONS 0 2 authors, including: Jonathan Bell Curtin University 17 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Greenland View project Mineral asset valuation and pricing View project All content following this page was uploaded by Jonathan Bell on 20 November 2020. The user has requested enhancement of the downloaded file. ARCTIC RIFT COPPER Part of world’s newest metallogenic province: Kiffaanngissuseq Technical Assessment Report Greenfields Exploration Ltd November 2020 This report presents a holistic view of north eastern Greenland’s geology. The empirical evidence of mineralisation and geological record are tied in with mineral system components from global through to prospect scales. The source rocks, geodynamic triggers, pathways, and deposition sites are all identified within a preserved terrane. This work defines the Kiffaanngissuseq metallogenic province, a previously undescribed mineral system. For the first time, we identify a c. 1,250 Ma orogenic event in the basement as the geodynamic trigger related to the basalt- hosted native copper within the Arctic Rift Copper project. A c. 385 Ma fluid migration is identified as the trigger for a second copper-sulphide mineralising event expressed within the project, that also emplaced a distal zinc deposit within Kiffaanngissuseq. This multi-episodal mineral system is supported by a regional geochemical and hydrodynamic framework that is not articulated elsewhere. -
Analysis of Glacier Flow Dynamics from Preliminary RADARSAT Insar Data of the Antarctic Mapping Mission
Analysis of Glacier Flow Dynamics from Preliminary RADARSAT InSAR Data of the Antarctic Mapping Mission Richard R. Forster, Kenneth C. Jezek, Hong Gyoo Soh Byrd Polar Research Center, The Ohio State Universtiy 1090 Carmack Rd., Columbus, OH 43210 tel. (614)292-1063, fax: (614)292-4697, [email protected] A. Laurence Gray and Karim E. Matter Canada Centre for Remote Sensing 588 Booth St., Ottawa, Ont., Canada K1A OY7 tel. (613)995-3671, fax: (613)947-1383,[email protected] INTRODUCTION The entire continent of Antarctica was mapped at a 25- meter resolution with synthetic aperture radar (SAR) during the Radarsat Antarctic Mapping Project (RAMP) over a 30- day period in the fall of 1997 providing a static “snapshot” of the ice sheet [l]. Since Radarsat-1 has a 24-day orbit cycle, repeat-pass interferometric SAR (InSAR) data was also acquired. The extensive InSAR data [1,2] will provide a view of ice sheet kinematics, for use in studies of glacier dynamics over vast unexplored areas. This information is required to determine the response of the Antarctic Ice Sheet to present and future climate change. In this paper we present the results of analysis of an InSAR pair for the Recovery Glacier, East Antarctica. Figure1. RADARSAT mosaic of the East Antarctic Ice streams centered on Recovery Glacier. Box is InSAR scene RECOVERY GLACIER The Recovery Glacier is a major outlet draining a portion of Queen Maud Land to the Filchner Ice Shelf. Feeding the glacier is a large ice stream and tributaries, the extent of which, are easily observable from the RAMP mosaic (Fig. -
Navigating Troubled Waters a History of Commercial Fishing in Glacier Bay, Alaska
National Park Service U.S. Department of the Interior Glacier Bay National Park and Preserve Navigating Troubled Waters A History of Commercial Fishing in Glacier Bay, Alaska Author: James Mackovjak National Park Service U.S. Department of the Interior Glacier Bay National Park and Preserve “If people want both to preserve the sea and extract the full benefit from it, they must now moderate their demands and structure them. They must put aside ideas of the sea’s immensity and power, and instead take stewardship of the ocean, with all the privileges and responsibilities that implies.” —The Economist, 1998 Navigating Troubled Waters: Part 1: A History of Commercial Fishing in Glacier Bay, Alaska Part 2: Hoonah’s “Million Dollar Fleet” U.S. Department of the Interior National Park Service Glacier Bay National Park and Preserve Gustavus, Alaska Author: James Mackovjak 2010 Front cover: Duke Rothwell’s Dungeness crab vessel Adeline in Bartlett Cove, ca. 1970 (courtesy Charles V. Yanda) Back cover: Detail, Bartlett Cove waters, ca. 1970 (courtesy Charles V. Yanda) Dedication This book is dedicated to Bob Howe, who was superintendent of Glacier Bay National Monument from 1966 until 1975 and a great friend of the author. Bob’s enthusiasm for Glacier Bay and Alaska were an inspiration to all who had the good fortune to know him. Part 1: A History of Commercial Fishing in Glacier Bay, Alaska Table of Contents List of Tables vi Preface vii Foreword ix Author’s Note xi Stylistic Notes and Other Details xii Chapter 1: Early Fishing and Fish Processing in Glacier Bay 1 Physical Setting 1 Native Fishing 1 The Coming of Industrial Fishing: Sockeye Salmon Attract Salters and Cannerymen to Glacier Bay 4 Unnamed Saltery at Bartlett Cove 4 Bartlett Bay Packing Co. -
2010-2011 Science Planning Summaries
Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites. -
Preliminary Science Flight Report Operation Icebridge Antarctica 2011
Preliminary Science Flight Report Operation IceBridge Antarctica 2011 Flight: F07 Mission: Slessor 1 Flight Report Summary Aircraft DC-8 (N817NA) Flight Number 120111 Flight Request 128008 Date Friday, October 21, 2011 (Z), Day of Year 294 Purpose of Flight Operation IceBridge Mission Slessor 1 Take off time 12:00:12 Zulu from Punta Arenas (SCCI) Landing time 23:23:40 Zulu at Punta Arenas (SCCI) Flight Hours 11.5 hours Aircraft Status Airworthy. Sensor Status All installed sensors operational. Significant Issues None Accomplishments Low-altitude survey (1,500 ft AGL) Bailey IceStream, Slessor Glacier and Recovery Glacier. Completed entire mission as planned. Collected data over an ice core site on Berkner Island. ATM, MCoRDS, snow and Ku-band radars, gravimeter, and DMS were operated on the survey lines. Conducted two ramp passes (2000 ft AGL) at Punta Arenas airport for ATM and DMS instrument calibration. Geographic Keywords Bailey Ice Stream, Slessor Glacier, Recovery Glacier, Berkner Island, Thyssen Höhe, Shackleton Range, Theron Mountains, Antarctica ICESat Tracks 0404 Repeat Mission None. Page | 1 Science Data Report Summary Instrument Instrument Operational Data Volume Instrument Issues Survey Entire High-alt. Area Flight Transit ATM 42 GB None MCoRDS 1.5 TB None Snow Radar 200 GB None Ku-band Radar 200 GB None DMS 98 GB None Gravimeter 2 GB None DC-8 Onboard Data 40 MB None Mission Report (Michael Studinger, Mission Scientist) Today’s mission is a new design. The intention is to sample the grounding line and lower part of Slessor Glacier and Bailey Ice Stream using all IceBridge low-altitude sensors. -
1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D. -
Observing the Antarctic Ice Sheet Using the Radarsat-1 Synthetic Aperture Radar1
OBSERVING THE ANTARCTIC ICE SHEET USING THE RADARSAT-1 SYNTHETIC APERTURE RADAR1 Kenneth C. Jezek Byrd Polar Research Center, The Ohio State University Columbus, Ohio 43210 Abstract: This paper discusses the RADARSAT-1 Antarctic Mapping Project (RAMP). RAMP is a collaboration between NASA and the Canadian Space Agency (CSA) to map Antarctica using the RADARSAT -1 synthetic aperture radar. The project was conducted in two parts. The first part, which had the data acquisition phase in 1997, resulted in the first high-resolution radar map of Antarctica. The second part, which occurred in 2000, remapped the continent below 80°S Latitude and is now using interfer- ometric repeat-pass observations to compute glacier surface velocities. Project goals and objectives are reviewed here along with several science highlights. These highlights include observations of ice sheet margin change using both RAMP and historical data sets and the derivation of surface velocities on an East Antarctic outlet glacier using interferometric data collected in 2000. INTRODUCTION Carried aloft by a NASA rocket launched from Vandenburg Air Force Base on November 4, 1995, the Canadian RADARSAT-1 is equipped with a C-band (5.3 GHz) synthetic aperture radar (SAR) capable of acquiring high-resolution (25 m) images of the Earth’s surface day or night and under all weather conditions. Along with the attributes familiar to researchers working with SAR data from the European Space Agency’s Earth Remote Sensing Satellite and ENVISAT as well as the Japa- nese Earth Resources Satellite, RADARSAT-1 has enhanced flexibility to collect data using a variety of swath widths, incidence angles, and resolutions. -
University Microfilms, a XEROX Company, Ann Arbor, Michigan
I I 72-4508 GUNNER, John Duncan, 1945- AGE AND ORIGIN OF THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA. The Ohio State University, Ph.D., 1971 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED AGE AND ORIGIN OP THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Duncan Gunner, 3.A., M.A ****** The Ohio State University 1971 Approved by Adviser Department of Geology PLEASE NOTE: Some Pages have indistinct p rin t. Filmed as received. UNIVERSITY MICROFILMS igure 1: View across the Beardmore Glacier from the Summit of Mount Kyffin. The Rocks in the Foreground are Argillites and Arenites of the 'Goldie Formation, and the Sharp Peak is formed of Hope Granite. The Rounded Mountain on the Left Horizon is The Cloudmaker. ACKNOWLEDGMENTS I am greatly indebted to Dr. Gunter Faure for his enthusiastic ad vice and encouragement throughout this study. I am grateful also to the members of the Institute of Polar Studies expeditions to the Beardmore Glacier region during the 1967-1968 and 1969-1970 field seasons, and especially to David Johnston and to Drs. I. C. Rust and D. H. Elliot for willing assistance and stimulating dis cussions in the field. Logistic field support was provided by Squadron VXE-6 of the U. S. Naval Support Force, Antarctica, without whose help this study would not have been possible. -
November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States. -
Cosmogenic-Nuclide Exposure Ages from the Pensacola Mountains Adjacent to the Foundation Ice Stream, Antarctica
[American Journal of Science, Vol. 316, June, 2016,P.542–577, DOI 10.2475/06.2016.02] COSMOGENIC-NUCLIDE EXPOSURE AGES FROM THE PENSACOLA MOUNTAINS ADJACENT TO THE FOUNDATION ICE STREAM, ANTARCTICA GREG BALCO*,†, CLAIRE TODD**, KATHLEEN HUYBERS***, SETH CAMPBELL§, MICHAEL VERMEULEN**, MATTHEW HEGLAND**, BRENT M. GOEHRING§§, AND TREVOR R. HILLEBRAND*** ABSTRACT. We describe glacial-geological observations and cosmogenic-nuclide exposure ages from the Schmidt, Williams, and Thomas Hills in the Pensacola Mountains of Antarctica adjacent to the Foundation Ice Stream (FIS). Our aim is to learn about changes in the thickness and grounding line position of the Antarctic Ice Sheet in the Weddell Sea embayment between the Last Glacial Maximum (LGM) and the present. Glacial-geological observations from all three regions indicate that currently- ice-free areas were covered by ice during one or more past ice sheet expansions, and that this ice was typically frozen to its bed and thus non-erosive, permitting the accumulation of multiple generations of glacial drift. Cosmogenic-nuclide exposure- age data from glacially transported erratics are consistent with this interpretation in that we observe both (i) samples with Holocene exposure ages that display a systematic age-elevation relationship recording LGM-to-present deglaciation, and (ii) samples with older and highly scattered apparent exposure ages that were deposited in previous glacial-interglacial cycles and have experienced multiple periods of surface exposure and ice cover. Holocene exposure ages at the Thomas and Williams Hills, upstream of the present grounding line of the FIS, show that the FIS was at least 500 m thicker prior to 11 ka, and that 500 m of thinning took place between 11 and 4 ka. -
Ice-Free Valleys in the Neptune Range of the Pensacola Mountains, Antarctica: Glacial Geomorphology, Geochronology and Potential
Antarctic Science 33(4), 428–455 (2021) © The Author(s), 2021. Published by Cambridge University Press on behalf of Antarctic Science Ltd. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102021000237 Ice-free valleys in the Neptune Range of the Pensacola Mountains, Antarctica: glacial geomorphology, geochronology and potential as palaeoenvironmental archives DAVID SMALL 1, MICHAEL J. BENTLEY 1, DAVID J.A. EVANS1, ANDREW S. HEIN 2 and STEWART P.H.T. FREEMAN 3 1Department of Geography, Durham University, Durham, DH1 3LE, UK 2School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 3Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK [email protected] Abstract: We describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ∼1 Ma.