Smart Environments
Total Page:16
File Type:pdf, Size:1020Kb
A Uni ed Distributed System Architecture for Goal-based Interaction with Smart Environments Dipl.-Ing. Thomas Heider Rostock, April 22, 2009 Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultät für Informatik und Elektrotechnik der Universität Rostock Principal Adviser Prof. Dr. Thomas Kirste, Universität Rostock External Reviewers Prof. Dr. Birgitta König-Ries, Universität Jena Prof. Dr. Klaus Schmid, Universität Hildesheim Day of Defense: July 24, 2009 ii Abstract The vision of Ambient Intelligence is based on the ubiquity of information technology, the presence of computation, communication, and sensorial capabilities in an unlimited abun- dance of everyday appliances and environments. It is now a signi cant challenge to let ambient intelligence effortlessly emerge from the de- vices that surround the user in his environment. Future ambient intelligent infrastructures (e.g., Smart Environments) must be able to con gure themselves from the available com- ponents in order to be effective in the real world. They require software technologies that enable ad-hoc ensembles of devices to spontaneously form a coherent group of cooperating components. This is speci cally a challenge, if the individual components are heterogeneous in nature and have to engage in complex activity sequences in order to achieve a user goal. Typical examples of such ensembles are smart environments. It will be argued that enabling an ensemble of devices to spontaneously and coherently act on behalf of the user, requires software technologies that support unsupervised spontaneous cooperation. This thesis will illustrate why a goal based approach is reasonable and how explicit goals can be used to nd device spanning strategies that assist the user. In order to solve the challenges noted above, an overall concept and architecture based on goal based interaction will be illustrated. Furthermore different concepts of cooperation strategies will be introduced and nally an evaluation will prove the validity of the approach. iii iv Kurzfassung Die Vision von Ambient Intelligence basiert auf ubiquitären Informationstechnologien in Alltagsgeräten und Umgebungen, wobei Rechnerkapazität, Kommunikation und sensorische Fähigkeiten in einer unlimitierten Form vorhanden sind. Eine der zentralen Herausforderungen ist es dafür zu sorgen, dass Ambient Intelligence aus den Geräten die den Nutzer umgeben mühelos enstehen kann. Zukünftige Ambient Intel- ligence Infrastrukturen (z.B. Intelligente Umgebungen) müssen in der Lage sein, sich aus den vorhandenen Komponenten selbst zu kon gurieren, um in der realen Welt effektiv zu sein. Dies erfordert Softwaretechnologien, die es einem ad-hoc Ensemble von Geräten er- möglichen, spontan eine Gruppe von kooperierenden Komponenten zu bilden. Dies ist besonders deshalb eine Herausforderung, da die individuellen Komponenten sehr heterogen sind und sich an komplexen Aktivitäts-Sequenzen beteiligen müssen, um die Nutzerziele zu erreichen. Ein typisches Beispiel für solche Ensembles sind sogenannte Smart Environments. Um Geräte-Ensembles zu befähigen, spontan und kohärent im Interesse des Nutzers zu agieren, werden Technologien benötigt die unüberwachte spontane Kooperation unterstützen. Die Dissertation wird darstellen, warum ein zielbasierter Ansatz erfolgversprechend ist, und wie explizite Ziele verwendet werden können, um systemübergreifende Strategien zu gener- ieren. Um die zuvor erwähnten Herausforderungen zu lösen, wird ein Gesamtkonzept und eine Architektur vorgestellt, die auf zielbasierter Interaktion basiert. Weiterhin werden ver- schiedene Konzepte zur Generierung von Kooperationsstrategien erläutert. Eine abschließen- de Evaluierung zeigt die Gültigkeit des Ansatzes. v vi Contents 1 Introduction 1 1.1 Thematic Context & Motivation . 1 1.2 Ambient Intelligent Environments . 5 1.2.1 Application Scenarios . 6 1.2.2 User Requirements . 9 1.3 Building AmI Systems . 11 1.3.1 Some Challenges . 12 1.3.2 System Requirements . 14 1.4 Approach . 15 1.4.1 Paradigm . 16 1.4.2 Architectural Integration . 17 1.4.3 Operational Integration . 18 1.4.4 Proof of Realizability & Usefulness . 19 1.4.5 Generalization . 19 1.5 Contribution & Results of the Thesis . 19 1.6 Chronology of the presented work . 20 1.7 Outline . 21 2 Goal-based Interaction 23 2.1 The Application Domain . 23 2.2 Function-based vs. Goal-based . 24 2.3 Dynamic Extension . 25 2.4 Explicit Goals . 27 2.4.1 Goals in Smart Environments . 28 2.4.2 Goal classi cation . 32 2.4.3 Goal Example: Direct Goals . 33 2.4.4 Goal Example: Indirect Goals . 34 2.5 Goal-based Interaction – Conclusion . 35 2.5.1 Intention Analysis . 35 2.5.2 Strategy Generation . 36 vii CONTENTS 2.6 GbI and Computer-based Assistance . 36 2.6.1 The Mental Model . 38 2.7 Chapter Summary . 39 3 Related Work – Smart Environments 43 3.1 Device cooperation / user assistance in smart environments . 43 3.1.1 Custom-tailored by the designer . 43 3.1.2 Device cooperation by Plan Recognition . 46 3.1.3 Learning by observing the user . 47 3.1.4 Device cooperation by Matchmaking . 49 3.1.5 Device cooperation – Projects focusing on middleware . 51 3.1.6 Strategies for cooperation from other research areas . 52 3.2 Software infrastructures for distributed systems . 54 3.3 Summary . 56 3.3.1 Verdict on operational integration . 57 3.3.2 Verdict on architectonic integration . 57 4 Architecture Framework 59 4.1 Introduction . 59 4.2 Middleware challenges . 61 4.3 The Embassi architecture . 63 4.3.1 The Multi-Modal-Interaction (MMI) levels . 64 4.3.2 The assistance levels . 65 4.3.3 Additional notes on the generic architecture . 65 4.4 The middleware model Soda-Pop ........................ 67 4.4.1 Component types . 67 4.4.2 Channels & systems . 68 4.4.3 Subscriptions . 70 4.4.4 Message handling . 71 4.5 Related work . 73 4.6 Summary and outlook . 74 4.6.1 What has been achieved so far . 74 4.6.2 Additional considerations . 75 4.6.3 Enhancement of Soda-Pop with an agent selection algorithm . 76 4.7 Ensemble Communication Framework – ECo . 77 viii 5 AI Planning as Source of the Assistance Strategy 81 5.1 Introduction . 81 5.2 Architecture overview . 82 5.3 Planning as assistance . 84 5.3.1 Concrete example . 84 5.4 Why Planning as Inference? . 85 5.4.1 Reasoning Methods in AI . 85 5.4.2 Planning vs. Service Matching . 86 5.5 The planning domain model . 87 5.5.1 Representing Plans . 87 5.5.2 Choosing a planning language . 89 5.5.3 PDDL . 91 5.5.4 Choosing a Planning System . 98 5.5.5 What about HTN planning? . 99 5.6 The Scheduling Coordination Algorithm . 100 5.7 The joint ontology . 102 5.8 Prototype . 102 5.8.1 System extension . 103 5.8.2 Operating sequence example . 106 5.9 Limits of the AI planning approach as assistance method . 106 5.10 Distributed vs. Centralized Strategy Generation . 107 5.11 Chapter summary . 108 6 Optimization as Source of the Assistance Strategy 111 6.1 Introduction . 111 6.2 Smart Meeting Rooms . 112 6.3 Managing Multi-Display Environments . 113 6.4 The Need for Automatic Display Mapping . 115 6.4.1 User Requirements . 116 6.5 De ning Optimal Display Mapping . 116 6.5.1 qs – Spatial Quality . 118 6.5.2 qt – Temporal Continuity . 121 6.5.3 qp – Semantic Proximity . 121 6.5.4 Discussion of q ..............................122 6.5.5 Using q ..................................122 6.6 Distributed Optimization in ad-hoc Ensembles . 123 6.6.1 Related Work . 125 6.6.2 The Search Space . 125 6.6.3 The Display Mapping Problem as a Special Case of the Quadratic Assignment Problem . 128 ix CONTENTS 6.6.4 Distributed Optimization – The Approach . 129 6.6.5 GRASP . 129 6.6.6 Distributing GRASP (DGRASP) . 131 6.6.7 Running DGRASP . 135 6.7 Evaluation of DGRASP . 137 6.7.1 Environment Simulator . 140 6.7.2 Section Summary . 141 6.8 Combining DGRASP.