(12) Patent Application Publication (10) Pub. No.: US 2010/0204220 A1 Attala Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2010/0204220 A1 Attala Et Al US 20100204220A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0204220 A1 Attala et al. (43) Pub. Date: Aug. 12, 2010 (54) HETEROCYCLIC MODULATORS OF Related U.S. Application Data CANNABINOID RECEPTORS (60) Provisional application No. 60/949,536, filed on Jul. 13, 2007, provisional application No. 61/036,321, (75) Inventors: Mohamed Naquib Attala, filed on Mar. 13, 2008. Houston, TX (US); Philippe Diaz, Publication Classification Missoula, MT (US) (51) Int. Cl. A6II 3/343 (2006.01) Correspondence Address: C07D 307/79 (2006.01) Nielsen IP Law LLC C07D 405/ (2006.01) 1177 West Loop South, Suite 1600 C07D 405/2 (2006.01) Houston, TX 77027 (US) C07D 413/10 (2006.01) A63L/4525 (2006.01) A63L/35 (2006.01) (73) Assignee: Board of Regents, The University A 6LX 3/5.377 (2006.01) of Texas System A6IP 25/00 (2006.01) A6IP 25/30 (2006.01) (21) Appl. No.: 12/668,840 (52) U.S. Cl. ...................... 514/233.5; 549/469; 546/196: 549/414:544/153: 514/469; 514/320: 514/459 (22) PCT Fled: Jul. 14, 2008 (57) ABSTRACT Heterocyclic compounds which modulate cannabinoid (86) PCT NO.: PCT/US08/69977 receptors are presented. Pharmaceutical compositions con taining these compounds, methods of using these compounds S371 (c)(1), as modulators of cannabinoid receptors and processes for (2), (4) Date: Mar. 2, 2010 synthesizing these compounds are also described herein. Patent Application Publication Aug. 12, 2010 Sheet 1 of 20 US 2010/0204220 A1 10 O- - - - - - - - - - - - - - - - - - - - -------------------------------------------- 9-10 O 3-20 a. S$ -30 -40 ----- 1 O 100 OOO 10OOO 10OOOO Ligand (nM) Figure 1A 80 70 EC50 = 478.9 nM O 100 1000 OOOO 100000 Ligand (nM) Figure 1B Patent Application Publication Aug. 12, 2010 Sheet 2 of 20 US 2010/0204220 A1 30 2O 1 O 20 10 100 1000 10000 1OOOOO Ligand (nM) Figure 2A 100 90 ECE 160 nM H 1 10 100 1000 1OOOO 1OOOOO Ligand (nM) Figure 2B Patent Application Publication Aug. 12, 2010 Sheet 3 of 20 US 2010/0204220 A1 -3-2 OO -4 O 50 SO 1 10 100 1OOO OOOO OOOOO Ligand (nM) Figure 3A 8O EC = 408 nM 6 O 4 O 2O A. O Ham O 100 1000 0000 10000 Ligand (nM) Figure 3B Patent Application Publication Aug. 12, 2010 Sheet 4 of 20 US 2010/0204220 A1 1 6 IgEEE------------ --- 1 N 1 2 1 O -E Example3 (30 mg/kg, IP) (n=1) Hm O 10 20 30 40 50 60 7O 80 90 100 110 120 Time (min) Figure 4 Patent Application Publication Aug. 12, 2010 Sheet 5 of 20 US 2010/0204220 A1 bt be 1 V E. Example3 (100 ug, IT) (n=2) V -O- Dimethyl Sulfoxide (5ul, IT) (n=1) 9 12 VV 3 N 1 N H th 3 t O 3 3 s A. O 10 20 30 40 50 60 70 80 90 Time (min) Figure 5 Patent Application Publication Aug. 12, 2010 Sheet 6 of 20 US 2010/0204220 A1 * Example3 (5 mg/kg, IP) (n = 5) "A Morphine (5 mg/kg, IP) (n = 4) 7 1 Hmmm, O 10 20 30 40 50 60 70 80 90 100 110 120 Time (min) Figure 6 Patent Application Publication Aug. 12, 2010 Sheet 7 of 20 US 2010/0204220 A1 O ON ON O O O O NaOH, EtOH, HO O O 1. KCO, Pd(OAc), Piperidine, HATU n-BuNC,Ph-B(OH), DMF ( ) DEA, DMF, CHCI, ( ) Figure 7 Patent Application Publication Aug. 12, 2010 Sheet 8 of 20 US 2010/0204220 A1 100- B 4O 13 -12 1 0 9 8 7 6 Log CP55940 W g M Log Compound in Example 3M Figure 8A Figure 8B Patent Application Publication Aug. 12, 2010 Sheet 9 of 20 US 2010/0204220 A1 10A90 1000 B s 80 g 70 a 500 is 60 50 is 3 2 1 is -500 isA. 0 A.s & -10 -20 -1000 O 10 20 30 40 SO 60 7O 80 90 10010120 Time (min) g Compound of Example 3 (10 mg/kg) -E Compound of Example 3 (3 mg/kg) t Compound of Example 3 (1 mg/kg) se Vehicle Figure 9 Patent Application Publication Aug. 12, 2010 Sheet 10 of 20 US 2010/0204220 A1 Right (contralateral) paw - Right paw 8 e left (ipsilateral) paw 8 6 s 4. 4. 2 2 O O 0 1 2 3 4 5 6 7 8 O 1 2 3 4 5 7 8 9 10111213141516 Day Day Figure 10A Figure 10B Patent Application Publication Aug. 12, 2010 Sheet 11 of 20 US 2010/0204220 A1 E Compound of Example 3-5 mg/kg (contralateral paw) - Compound of Example 3- 10 mg/kg (contralateral paw) - Compound of Example 3- 15 mg/kg (contralateral paw) s 8 - Compound of Example 3-5 mg/kg (ipsilateral paw) -- Compound of Example 3-10 mg/kg (ipsilateral paw) -- Compound of Example 3- 15 mg/kg (ipsilateral paw) Vehicle (ipsilateral paw) is O 8. Tineni Figure 11A 's s O 8 s i 2 is . w. S. Compound of Example 3 (mg/kg) Figure 11C Figure 11B Patent Application Publication Aug. 12, 2010 Sheet 12 of 20 US 2010/0204220 A1 4000 3 O O O 2000 1000 Figure 12 Patent Application Publication Aug. 12, 2010 Sheet 13 of 20 US 2010/0204220 A1 4000 (Ony)plousºuq}|eMelp??^^Med 2000 | (6X/6uu01)ºeldueXE?opunoduuoo |||||||||||||||||||||||cºdulexaºpunoduco-ºdoxoen Figure 13 Patent Application Publication US 2010/0204220 A1 Figure 14A (aas)áðubre,qenwerp??yamedsaw% Patent Application Publication Aug. 12, 2010 Sheet 15 of 20 US 2010/0204220 A1 ****sae (6)||6uug)ÇeduexE.JopunoduuOO Figure 14C (6X/6uuGL)ºelduexH?opunoduloo (3)prousæuua?enaeapua?aawaedadw% Figure 14D Patent Application Publication Aug. 12, 2010 Sheet 16 of 20 US 2010/0204220 A1 2 1. 5 4. 2 O 1 2 3 4 5 6 7 8 9 O 1112 131415 1617 1819 2021222324252627 28 Day On Paclitaxel 4d -e Paclitaxel 4d + Vehicle Paclitaxel 4d + Compound of Example 3-4d Paclitaxel 4d + Compound of Example 3-14d Figure 15 C Paclitaxel 4d + Melatonin 4d O Paclitaxel 4d + Melatonin 14d Patent Application Publication Aug. 12, 2010 Sheet 17 of 20 US 2010/0204220 A1 Vehicle Compound of Example 3 (15/mg/kg) Win 55,212-2 (7 mg/kg) Haloperidol (1 mg/kg) 3. i Figure 16A Vehicle Compound of Example 3 (15/mg/kg) Win 55,212-2 (7 mg/kg) in Haloperidol (1 mg/kg) Figure 16B Patent Application Publication Aug. 12, 2010 Sheet 18 of 20 US 2010/0204220 A1 Vehicle Compound of Example 3 (15/mg/kg) Win 55,212-2 (7 mg/kg) Haloperidol (1 mg/kg) Figure 16C Vehicle Compound of Example 3 (15/mg/kg) Win 55,212-2 (7 mg/kg) Haloperidol (1 mg/kg) s Figure 16D Patent Application Publication Aug. 12, 2010 Sheet 19 of 20 US 2010/0204220 A1 10 the Paclitaxel 8 a Vehicle of Example 3 + Paclitaxel --he Compound of Example 3 10d + Paclitaxel 4d 0 1 2 3 4 5 6 7 8 9 101112131415 16171819202122232425262728 Day Figure 17 O 1 2 3 4 5 G 8 9112314156 Day Figure 18 Patent Application Publication Aug. 12, 2010 Sheet 20 of 20 US 2010/0204220 A1 in Paclitaxel - Vehicles + Paclitaxel nk Compound of Example 3 4d + Paclitaxel - Compound of Example 3 10d + Paclitaxel 8 2 3 4 S 6 8 1, 2 Day Figure 19A Paclitaxel SA - Vehicles + Paclitaxel * Compound of Example 3 4d + Paclitaxel 4d - Compound of Example 3 10d + Paclitaxel 4d t A. 2 3 8, 9 12 Day Figure 19B US 2010/0204220 A1 Aug. 12, 2010 HETEROCYCLIC MODULATORS OF 0008. A class of heterocyclic compounds, useful in treat CANNABINOID RECEPTORS ing cannobinoid receptor mediated disorders and conditions, is presented and defined by the structural Formula I: CROSS-REFERENCE TO RELATED APPLICATIONS 0001. This application claims priority to U.S. Pat. App. Ser. No. 60/949,536 filed Jul. 13, 2007 and to U.S. Pat. App. Ser. No. 61/036,321 filed Mar. 13, 2008. These applications are incorporated by reference herein it their entirety. FIELD OF THE INVENTION 0002 The present invention is directed to new heterocy clic compounds and compositions and their application as pharmaceuticals for the treatment of disease. Methods of modulating cannabinoid receptor activity in human or animal or a salt, ester or prodrug thereof, wherein: subject are provided for the treatment of diseases. 0009 R' is selected from the group consisting of NH, NHR'. NRR, any carbon atom of which may be STATEMENT REGARDING FEDERALLY optionally substituted; SPONSORED RESEARCH ORDEVELOPMENT I0010 R is selected from the group consisting of hydro 0003. None. gen, aryl, alkyl, cycloalkyl, aralkyl, alkenyl, and alky nyl, any carbon atom of which may be optionally Sub THE NAMES OF THE PARTIES TO AJOINT stituted; RESEARCH AGREEMENT I0011 R is selected from the group consisting of hydro 0004. None. gen, halogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, any carbon atom of which may be REFERENCE TO SEQUENCE LISTING optionally Substituted; and 0005. None. 0012 R and R vary independently and are selected from the group consisting of aryl, alkyl, cycloalkyl, BACKGROUND OF THE INVENTION aralkyl, alkenyl, and alkynyl, any carbonatom of which may be optionally substituted, 0006 CB1 and CB2 are two cannabinoid receptors that belong to the GPCR family and have very different functions and by the structural Formula III: and distribution. While no x-ray structure is available for these receptors, various models have been described on the basis of the X-ray structure of rhodopsin, a GPCR belonging protein responsible of the light sensitivity in vision.
Recommended publications
  • Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur
    molecules Review Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur Mieko Arisawa * and Masahiko Yamaguchi Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-22-795-6814 Academic Editor: Bartolo Gabriele Received: 17 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Organosulfur compounds are widely used for the manufacture of drugs and materials, and their synthesis in general conventionally employs nucleophilic substitution reactions of thiolate anions formed from thiols and bases. To synthesize advanced functional organosulfur compounds, development of novel synthetic methods is an important task. We have been studying the synthesis of organosulfur compounds by transition-metal catalysis using disulfides and sulfur, which are easier to handle and less odiferous than thiols. In this article, we describe our development that rhodium complexes efficiently catalyze the cleavage of S-S bonds and transfer organothio groups to organic compounds, which provide diverse organosulfur compounds. The synthesis does not require use of bases or organometallic reagents; furthermore, it is reversible, involving chemical equilibria and interconversion reactions. Keywords: rhodium; catalysis; synthesis; organosulfur compounds; S-S bond cleavage; chemical equilibrium; reversible reaction 1. Introduction 1.1. Structure and Reactivity of Organic Disulfides Organosulfur compounds containing C-S bonds are widely used for the manufacture of drugs and materials. Compared with organic compounds containing oxygen, which is another group 16(6A) element, different properties appear owing to the large size and polarizability of sulfur atoms.
    [Show full text]
  • B.Sc. III YEAR ORGANIC CHEMISTRY-III
    BSCCH- 302 B.Sc. III YEAR ORGANIC CHEMISTRY-III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY ORGANIC CHEMISTRY-III BSCCH-302 BSCCH-302 ORGANIC CHEMISTRY III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 ORGANIC CHEMISTRY-III BSCCH-302 Expert Committee Prof. B.S.Saraswat Prof. A.K. Pant Department of Chemistry Department of Chemistry Indira Gandhi National Open University G.B.Pant Agriculture, University Maidan Garhi, New Delhi Pantnagar Prof. A. B. Melkani Prof. Diwan S Rawat Department of Chemistry Department of Chemistry DSB Campus, Delhi University Kumaun University, Nainital Delhi Dr. Hemant Kandpal Dr. Charu Pant Assistant Professor Academic Consultant School of Health Science Department of Chemistry Uttarakhand Open University, Haldwani Uttarakhand Open University, Board of Studies Prof. A.B. Melkani Prof. G.C. Shah Department of Chemistry Department of Chemistry DSB Campus, Kumaun University SSJ Campus, Kumaun University Nainital Nainital Prof. R.D.Kaushik Prof. P.D.Pant Department of Chemistry Director I/C, School of Sciences Gurukul Kangri Vishwavidyalaya Uttarakhand Open University Haridwar Haldwani Dr. Shalini Singh Dr. Charu Pant Assistant Professor Academic Consultant Department of Chemistry Department of Chemistry School of Sciences School of Science Uttarakhand Open University, Haldwani Uttarakhand Open University, Programme Coordinator Dr. Shalini Singh Assistant Professor Department of Chemistry Uttarakhand Open University Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 ORGANIC CHEMISTRY-III BSCCH-302 Unit Written By Unit No. Dr. Charu Pant 01, 02 & 03 Department of Chemistry Uttarakhand Open University Haldwani Dr.
    [Show full text]
  • Heterocyclic Chemistry Updated
    1 | Page Heterocyclic Chemistry By Dr Vipul Kataria Definition: A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements (N, O, S, P) as members of its ring. Introduction: Heterocyclic compounds may be defined as cyclic compounds having as ring members atoms of at least two different elements. It means the cyclic compound has one another atom different than carbon. Heterocyclic compounds have much importance in organic chemistry because of abundant presence of heterocyclic compounds in present pharmaceutical drugs. Like other organic compounds, there are several defined rules for naming heterocyclic compounds. IUPAC rules for nomenclature of heterocyclic systems (SPU 2012, 2 Marks) The system for nomenclature for heterocyclic systems was given by Hantzsch and Widman. The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated. This system of nomenclature applies to monocyclic 3-to-10-membered ring heterocycles. Type of the heteroatom: The type of heteroatom is indicated by a prefix as shown below for common hetreroatoms. Dr Vipul Kataria, Chemistry Department, V. P. & R. P. T. P. Science College, VV Nagar 2 | Pag e When two or more of the same heteroatoms are present, the prrefix di, tri, tetra… are used. e.g. dioxa, triaza, dithia. If the heteroatoms are different their atomic number in that grroup is considered. Thus order of numbering will be O, S, N, P, Si. Ring size: The ring size is indicated by a suffix according to Table I below.
    [Show full text]
  • Heterocyclic Compounds with Biological Meaning
    Heterocyclic compounds with biological meaning 1 Heterocyclic compounds Cyclic, organic compounds which besides carbon atoms have one or more heteroatom (other elements than C). Heterocyclic atoms: – nitrogen, N – sulphur, S – oxygen, O – phosphorus, P – barium, Ba – zinc, Zn – silicon, Si. 2 Heterocyclic compounds From the biological point of view, the most important are heterocyclic compounds with 5- and 6-membered rings, containing: S, N, O. Most of the heterocyclic compounds have their common names. Substituent’s position in the ring is described by : – number – position of heteroatom – no. 1 – Greek letter – describes carbon atom the closest to heteroatom as a, then β and γ, respectively. 3 Heterocyclic compounds Heterocyclic compounds are: • widespread in nature • biologically active • some of them are toxic (e.g. coniine, coumarin and derivatives). Occurrence in: • natural dyes - heme, chlorophyll • alkaloids – atropine and nicotine • amino acids such as tryptophan and histidine • enzymes, nucleoproteins, antibiotics • vitamins • many synthetic pharmaceuticals. 4 Heterocyclic compounds Aromatic character of heteroatom-containing ring comes from aromatic sextet which consists of: • „not bound” electron pairs of heteroatoms • four electrons π from carbon atoms Pyrrole Furane Thiophen 5 5- membered ring heterocyclic compounds with one heteroatom 5-membered rings: • contain mostly oxygen, sulphur and nitrogen • are flat • are aromatic 6 5- membered ring heterocyclic compounds with two heteroatoms oxazole imidazole thiazole pyrazole 7 5- membered ring heterocyclic compounds With one heteroatom With two heteroatoms Condensation products with benzene 8 Pyrrole and derivatives • Pyrrole derivatives: • pyrroline • pyrrolidone • proline, • Hydroksyproline. • Condensation’s products of pyrrole with benzene: – indole, – tryptophan, – serotonin. • Condensation’s products of pyrrole with formaldehyde: – heme – hemoglobin – billirubin – porphyrins – Biliverdin.
    [Show full text]
  • New Chiral Auxiliaries for the [3+2]-Cycloaddition of Nonstabilised Azomethine Ylides
    New Chiral Auxiliaries For The [3+2]-Cycloaddition Of Nonstabilised Azomethine Ylides Allan Rostrup Forup Jensen A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Christopher Ingold Laboratories University College London London 20 Gordon Street WC1H OAJ ProQuest Number: 10610918 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10610918 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 /\cjmowieugemenis First and foremost I wish to thank my supervisor, Professor K. J. Hale, for the constant support, encouragement and guidance he has provided throughout the duration of this project. I also wish to take this opportunity to thank my sponsor, Rhone- Poulenc-Rorer, without whom this project would not have been possible. I also wish to thank past and present members of the Hale group for their friendship and encouragement. In particular, Dr. J. Cai was an invaluable help and inspiration. For their friendship and enormous support through good and bad times, Rukpong Tupprasoot, Neha Jogiya, Andrew Calabrese, Dr. Gurpreet Bhatia, Marc Hummersone, Rafaqat Hussain, also deserve to be mentioned.
    [Show full text]
  • Synthesis of Heterocyclic Compounds and Its Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Arabian Journal of Chemistry (2015) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Synthesis of heterocyclic compounds and its applications Mohan N. Patel *, Parag S. Karia, Pankajkumar A. Vekariya, Anshul P. Patidar Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India Received 28 February 2015; accepted 26 June 2015 KEYWORDS n n Abstract The octahedral ruthenium(II) complexes [Ru(L )(PPh3)2Cl2][L= biphenyl furanyl Heterocyclic compound; pyridine derivatives] were synthesized and characterized using LC–MS, IR spectroscopy, elemental Ruthenium(II) complexes; analysis and magnetic measurements. Complexes show enhancement in antibacterial activity Nucleic acid intercalating compared to free ligands. From the binding mode investigation by absorption titration and agent; viscosity measurement, it is observed that complexes bind to DNA via intercalation and also Cytotoxicity complexes promote the cleavage of supercoiled pUC19 plasmid DNA. Cytotoxicity analysis shows 100% mortality of Brine shrimp after 48 h. ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction containing planar polycyclic hetero aromatic ligands (Ji et al., 2001). Studies on DNA-binding of the complexes are Recently, metal complexes as DNA interacting agents have crucial in development of nucleic acid interaction, chemother- been talk in medicinal inorganic chemistry (Fei et al., 2014; apy and photodynamic treatment (Huppert, 2008; Zhao et al., 2011; Abou-Hussen and Linert, 2009; Patel, Balasubramanian and Neidle, 2009; Georgiades et al., 2010).
    [Show full text]
  • Heterocyclic Compou Review Cyclic Compounds and Its Biological
    Original Article Heterocyclic compou nds and its biological activity a review Kedar Nathrao A Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Abstract Heterocyclic compounds are of particular interest in medicinal chemistry. The chemistry of heterocyclic compounds is one of the most complex branches of chemistry. It is equally interesting for its theoretical implication for the diversity of its synthetic procedure and for the physiological and industrial significances. More than 90% of new dru ges contain heterocycles and the interface between chemistry and biology, at which so much new scientific insight, discovery and application is taking place is crossed by hetrocyclic compounds. This review article covers the most active hetrocycles that ha ve shown considerable biological action as antifungal, anti -inflammatory antibacterial, anticonvulsant, antiallergic, herbicidal, anticancer activity. Majority of the large number of drugs being introduced in pharmacopeias every year are heterocyclic compounds. Keywords: Heterocyclic, biological activities. *Address for Correspondence: Dr. Kedar Nathrao A, Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Received Date: 25/05/2016 Revised Date: 12/0 6/2016 Accepted Date: 08/07/2016 therapeutically significant molecular sections, the Access this article online pharamacophores, the portion that can be deleted are of no interest as components of drug action; they are Quick Response Code: Website: regarded as the result of biosynthetic efforts on the parent www.statperson.com organism to construct materials for its own mateboli c or defensive purposes. Few heterocyclic compounds containing the five-membered oxadiazole nucleus possess 1,3,4 a diversity of us eful biological effects.
    [Show full text]
  • Heterocyclic Compound –A Review
    IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 43-46 www.iosrjournals.org Heterocyclic Compound –A Review Shital V. Hote 1, Shital P. Bhoyar2 1, 2 Department of Applied Chemistry, Shri Datta Meghe Polytechnic, Nagpur, India ABSTRACT : Main aim of this paper is to present the information regarding the Heterocyclic compounds that constitute the largest family of organic compounds. These are extremely important with wide array of synthetic, pharmaceutical and industrial applications. There is always a strong need for new and efficient processes in synthesizing of new Heterocycles. Several 1,3,4,5-tetraaryl-2 pyrazoline, 41 –piperazine, 3- methoxybenzofuran and thiazolidin-4-one substituted 1, 2, 4-triazole, 4- NO2, 2-OH and 4-Cl in phenyl ring at 5- position of pyrazoline ring of synthesized compounds. The new compounds were characterized using IR, 1H-NMR, 13C-NMR and mass spectra. Biological screening of some compounds is reported. Keywords: Synthesized compounds, heterocyclic substances. I. INTRODUCTION Compounds classified as heterocyclic probably constitute the largest and most varied family of organic compounds. After all, every carbocyclic compound, regardless of structure and functionality, may in principle be converted into a collection of heterocyclic analogs by replacing one or more of the ring carbon atoms with a different element. Even if we restrict our consideration to oxygen, nitrogen and sulfur (the most common heterocyclic elements), the permutations and combinations of such a replacement are numerous. Derivatives of the simple fused ring heterocycle purine constitute an especially important and abundant family of natural products. The amino compounds adenine and guanine are two of the complementary bases that are essential components of DNA.
    [Show full text]
  • Colorimetric Determination of Indole Using 2,4,6-Trimethoxybenzaldehyde
    International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-2, February 2016 Colorimetric Determination of Indole using 2,4,6-trimethoxybenzaldehyde Wafaa M. Yousef, Saad A.Al-Tamrah, Basmah H. Al-Shammari 4 3 Abstract— Indole is an aromatic heterocyclic organic 5 compound. The indole nucleus is very important for many 2 6 N N + N1 natural and synthetic molecules with significant biological 7 H H activity. Compounds that contain an indole ring are called H indoles. Indoles are an important class of heterocycles not only Indole Canonical because they are among the most ubiquitous compounds in nature, but also because they have a wide range of biological Indole, a secondary amine, is a natural product of pancreatic activities. 2,4,6-Trimethoxybenzaldehyde can be used as digestion, bacterial action and putrefaction decomposition. antibacterial synergist. When indole was mixed with Indole is the precursor to many pharmaceuticals. The name 2,4,6-trimethoxybenzaldehyde at room temperature, no color indole is portmanteau of the words indigo and oleum, since was observed. However in the presence of concentrated indole was first isolated by treatment of the indigo dye with hydrochloric acid, a brown red complex is formed which has a oleum. Indole chemistry began with the study of the dye maximum absorbance at 488 nm. The parameters affecting this indigo. The indole ring is also found in many natural products reaction were studied in order to find the suitable conditions for such as the vinca alkaloids, fungal metabolites and marine the reaction to complete. The effect of the acid concentration, the natural products [2].
    [Show full text]
  • Isocyclicc Com- Poundscompounds
    The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Mohammad Jafarzadeh Faculty of Chemistry, Razi University The Chemistry of Heterocycles, (Second Edition). By Theophil Eicher and Siegfried Hauptmann, Wiley-VCH Veriag GmbH, 2003 1 1 The Structure of Heterocyclic Compounds 1. The Structure of Heterocyclic Compounds • Molecules are defined by the type and number of atoms as well as by the covalent bonding within Mosthemt chemica. Therel arecompoundtwo mains consistypes tof ostructuref molecules: . The classification of such chemical compounds is base— Thed onatoms the structurform ae chainof thes-ealiphatic molecules(acyclic), whichcompounds is defined by the type and number of atoms as well as b—y thThee covalenatomst formbondina ringg withi- cyclicn themcompounds. There are two main types of structure: — The a t o m s form a chain - aliphatic (acyclic) compounds — The a t o m s form a ring - cyclic compounds CycliCyclicc compoundcompoundss iinn whicwhichh ththee rinringg isis madmadee upup ofof atomatomss ofof ononee elemenelementt onlonlyy areare callecalledd isocycliisocyclicc com- poundscompounds. If th.eIf rintheg consistring consistss of C-atomof C-atomss only,only, then thenwe speawe speakk of a carbocycliof a carbocyclicc compoundcompound,, e.g.: e.g.: NMe? O (4 - dimethylaminophenyl) pentazole cyclopenta -1,3 - diene isocyclic isocyclic und carbocyclic 2 Cyclic compounds with at least two different atoms in the ring (as ring atoms or members of the ring) are known as heterocyclic compounds. The ring itself is called a heterocycle. If the ring contains no C-atom, then we speak of an inorganic heterocycle, e.g.: MeO 2,4 - bis (4 - methoxyphenyl) - 1,3 - dithiadiphosphetan -2,4 - disulfide borazine (Lawesson - Reagent) If at least one ring atom is a C-atom, then the molecule is an organic heterocyclic compound.
    [Show full text]
  • Extraterrestrial Nucleobases in the Murchison Meteorite
    Extraterrestrial nucleobases in the Murchison meteorite Zita Martins a,b*, Oliver Botta c,d,1, Marilyn L. Fogel e, Mark A. Sephton b, Daniel P. Glavin c, Jonathan S. Watson f, Jason P. Dworkin c, Alan W. Schwartz g & Pascale Ehrenfreund a,c aAstrobiology Laboratory, Leiden Institute of Chemistry, 2300 RA Leiden, The Netherlands bDepartment of Earth Science and Engineering, Imperial College, London, SW7 2AZ, UK cNASA Goddard Space Flight Center, Code 699, Greenbelt, MD 20771, USA dGoddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD 21228, USA eGL, Carnegie Institution of Washington, Washington, DC 20015, USA fPlanetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK gRadboud University Nijmegen, 6525 ED, Nijmegen,The Netherlands 1Now at International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland. *Corresponding author: Zita Martins. Current address: Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK. Tel: +442075949982. Fax: +442075947444. Email: [email protected] To appear in Earth and Planetary Science Letters 270, 130-136. 15 June 2008 1 Abstract Carbon-rich meteorites, carbonaceous chondrites, contain many biologically relevant organic molecules and delivered prebiotic material to the young Earth. We present compound-specific carbon isotope data indicating that measured purine and pyrimidine compounds are indigenous components of the Murchison meteorite. Carbon isotope ratios for uracil and xanthine of δ13 C = +44.5‰ and +37.7‰, respectively, indicate a non-terrestrial origin for these compounds. These new results demonstrate that organic compounds, which are components of the genetic code in modern biochemistry, were already present in the early solar system and may have played a key role in life’s origin.
    [Show full text]
  • Heterocyclic Compounds
    Lecture note- 3 Organic Chemistry CHE 502 HETEROCYCLIC COMPOUNDS Co-Coordinator – Dr. Shalini Singh DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY UNIT 4: HETEROCYCLIC COMPOUNDS- I CONTENTS 4.1 Objectives 4.2 Introduction 4.3 Classification of heterocyclic compounds 4.4 Nomenclature of heterocyclic compounds 4.5 Molecular orbital picture 4.6 Structure and aromaticity of pyrrole, furan, thiophene and pyridine 4.7 Methods of synthesis properties and chemical reactions of Pyrrole, Furan, Thiophene and Pyridine 4.8 Comparison of basicity of Pyridine, Piperidine and Pyrrole 4.9 Summary 4.10 Terminal Question 4.1 OBJECTIVES In this unit learner will be able to • Know about the most important simple heterocyclic ring systems containing heteroatom and their systems of nomenclature and numbering. • Understand and discuss the reactivity and stability of hetero aromatic compounds. • Study the important synthetic routes and reactivity for five and six member hetero aromatic compounds. • Understand the important physical and chemical properties of five and six member hetero aromatic compounds. • Know about the applications of these hetero aromatic compounds in the synthesis of important industrial and pharmaceutical compounds 4.2 INTRODUCTION Heterocyclic compound is the class of cyclic organic compounds those having at least one hetero atom (i.e. atom other than carbon) in the cyclic ring system. The most common heteroatoms are nitrogen (N), oxygen (O) and sulphur (S). Heterocyclic compounds are frequently abundant in plants and animal products; and they are one of the important constituent of almost one half of the natural organic compounds known. Alkaloids, natural dyes, drugs, proteins, enzymes etc. are the some important class of natural heterocyclic compounds.
    [Show full text]