Visualizing Fish Movement, Behavior, and Acoustic Backscatter

Total Page:16

File Type:pdf, Size:1020Kb

Visualizing Fish Movement, Behavior, and Acoustic Backscatter Aquatic Living Resources 16 (2003) 277–282 www.elsevier.com/locate/aquliv Visualizing fish movement, behavior, and acoustic backscatter Richard H. Towler a,*, J. Michael Jech b, John K. Horne a a University of Washington, School of Aquatic and Fishery Sciences, Box 355020, Seattle, WA 98195, USA b NOAA Northeast Fisheries Science Center, Woods Hole, MA 02543, USA Accepted 27 January 2003 Abstract Acoustic surveys of aquatic organisms are notorious for large data sets. Density distribution results from these surveys are traditionally graphed as two-dimensional plots. Increasing information content through wider acoustic frequency ranges or multiple angular perspectives has increased the amount and complexity of acoustic data. As humans are visually oriented, our ability to assimilate and understand information is limited until it is displayed. Computer visualization has extended acoustic data presentation beyond two dimensions but an ongoing challenge is to coherently summarize complex data. Our goal is to develop visualizations that portray frequency- and behavior- dependent backscatter of individual fish within aggregations. Incorporating individual fish behavior illustrates group dynamics and provides insight on the resulting acoustic backscatter. Object-oriented applications are used to visualize fish bodies and swimbladders, predicted Kirchhoff-ray mode (KRM) backscatter amplitudes, and fish swimming trajectories in three spatial dimensions over time. Through the visualization of empirical and simulated data, our goal is to understand how fish anatomy and behavior influence acoustic backscatter and to incorporate this information in acoustic data analyses. © 2003 Éditions scientifiques et médicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved. Keywords: Acoustics; Backscatter; Kirchhoff-ray mode; Target strength; Visualization 1. Introduction Simultaneously measuring the influence of all biological factors on backscatter amplitudes is not yet possible. As an Fisheries acoustic surveys collect large data sets. A com- alternative, numeric and analytic models estimate backscat- mon challenge when presenting any large data set is to ter as a function of biological or physical factors of interest. parsimoniously represent data characteristics (e.g. ampli- Backscatter models augment experimental measures by pre- tudes, ranges, variances), while maximizing the amount of dicting echo amplitudes from individuals under known con- information portrayed. Acoustic data contain quantitative ditions. To illustrate by example, Kirchhoff-ray mode information on density and size distributions of backscatter- (KRM) backscatter models (Clay and Horne, 1994) have ing organisms. An important analytic task is to partition the been used to characterize frequency- and behavior- backscattered energy into categories representing size dependent backscatter of individual and aggregations of fish classes, species, or species groups. Classification of acoustic (Horne and Jech, 1999; Jech and Horne, 2001). Visualization backscatter utilizes echo amplitude or echo envelope metrics of results include backscatter response surfaces over a desig- when targets can be resolved, or patterns of backscatter from nated range of aspect angles, lengths, and carrier frequencies aggregations when targets are not resolvable. Fluctuations in (Fig. 6, Horne and Jech 1999; Fig. 5, Horne et al., 2000) and backscatter amplitudes from an individual impede consistent in interactive representations of fish bodies, swimbladders, and accurate classification of single targets. Variability in the and the corresponding acoustic backscatter ambits (Jech and amount of sound reflected by an aquatic organism is caused Horne, 2001, Fish3d www.acoustics.washington.edu). by the transmission of sound through water and by a suite of One approach used to examine how biological factors biological factors including anatomy, physiology, and behav- influence echo amplitudes integrates modeling of organism ior. behavior with acoustic measurements of fish distributions in computer visualizations. These visualizations should present * Corresponding author. large data sets in a coherent and comprehensive manner; E-mail address: [email protected] (R.H. Towler). reveal several levels of detail within data sets; avoid distor- © 2003 Éditions scientifiques et médicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved. doi:10.1016/S0990-7440(03)00011-1 278 R.H. Towler et al. / Aquatic Living Resources 16 (2003) 277–282 tion of measurements; prompt the viewer to think about mechanisms that cause observed patterns; and encourage comparisons among data sets (Tufte, 1983). This paper was motivated by an interest in visualizing three-dimensional swimming behavior and the resulting effects on acoustic backscatter. Simulations of adult walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus) dynamics are integrated with backscatter models to visualize the influ- ence of fish anatomy, orientation, and kinematics on acoustic measurements. We believe that visualization enhances the understanding of backscatter variability and can be used to improve conversions of acoustic data to biological meaning- ful numbers such as fish length, density, and abundance. 2. Materials and methods Our goal is to integrate echosounder properties with fish anatomy, backscatter model predictions, and fish trajectories to visualize factors that influence patterns in backscatter data. Three autonomous visualizations are integrated into a single computer application. First, digitized walleye pollock and capelin anatomy are visualized with the corresponding frequency-dependent acoustic backscatter. Second, the movements of fish within schools are visualized from the Fig. 1. Schematic diagram showing the relationship between the visualiza- perspective of a transducer or a member of the school. Third, tion classes, objects, and data. these two components are integrated to visualize the effect of fish orientation and movement on echo amplitude. Interac- The echofish class combines individual fish anatomical tion among the three components is facilitated using object- and acoustic data with behavioral and physical properties. oriented programming. The echofish class defines the location in space, velocity, and Object-oriented programming is a ubiquitous feature of the orientation as physical properties of echofish objects. The computer applications from games to scientific simulations. anatomical data stored in an echofish object are used to create An object-oriented approach improves efficiency and flex- a three-dimensional model of the fish used in the display. ibility of computer programming by coupling data and a set Acoustic backscatter data, either modeled or empirical, can of actions within an object class. An object class defines the be queried at specified tilt and roll orientations of an echofish data that are stored in an object and the actions that can be object. Because the echofish was designed to interact with performed on the object. Objects are derived from classes. any number of behavior simulators, specific behavioral pa- Each object is an instance of a class with its’ own unique set rameters are not defined in this class. The echofish class can of data that can be queried, manipulated, and visualized. The read and write behavioral parameters so that behavior simu- three classes used in this application correspond to the echo- lators can define and modify parameters at any time. This sounder, fish anatomy and associated backscatter, and fish permits simulators with varying parameter requirements to behavior. The echosounder class includes transducer proper- interact with echofish through a common interface and per- ties; the echofish class includes acoustical, anatomical, and mits each echofish to be parameterized independently if behavioral characteristics of individual fish; the trajectory needed. class defines fish movements in a shoaling and schooling Fish behavior is simulated by the trajectory class. Fish simulator (Fig. 1). velocities are calculated using a three-dimensional shoaling The echosounder class contains all properties of the echo- and schooling model. The formation and maintenance of fish sounder and transducers used in the application: location, aggregations is based on opposing forces of attraction and orientation, beam width, and frequency. The echosounder repulsion among individuals (Parr, 1927; Breder, 1954; tabulates backscatter by determining which targets are in the Horne, 1995). Magnitudes of attraction and repulsion forces beam, calculating the incident angle relative to the target’s are a function of the distance between individuals, canceling local axes, and then querying each target for a backscatter at the mean distance between individuals. Parameter values value. Backscatter amplitudes incorporate target orientations of the behavioral model are based on experimental or empiri- (i.e. tilt and roll) within the beam but are not corrected for cal observations adapted to approximate walleye pollock and transducer beam patterns. Echo amplitudes are equivalent to capelin kinematics. In our simulations, all fish are acousti- on axis targets at a variety of tilt and roll angles. cally resolved at any frequency. One walleye pollock is R.H. Towler et al. / Aquatic Living Resources 16 (2003) 277–282 279 chosen as the “lead”fish among the 20 echofish objects in the each point in the backscatter matrix is represented in the simulation. This pollock follows a specified trajectory ambit by color (purple
Recommended publications
  • Energetics of the Antarctic Silverfish, Pleuragramma Antarctica, from the Western Antarctic Peninsula
    Chapter 8 Energetics of the Antarctic Silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula Eloy Martinez and Joseph J. Torres Abstract The nototheniid Pleuragramma antarctica, commonly known as the Antarctic silverfish, dominates the pelagic fish biomass in most regions of coastal Antarctica. In this chapter, we provide shipboard oxygen consumption and nitrogen excretion rates obtained from P. antarctica collected along the Western Antarctic Peninsula and, combining those data with results from previous studies, develop an age-dependent energy budget for the species. Routine oxygen consumption of P. antarctica fell in the midrange of values for notothenioids, with a mean of 0.057 ± −1 −1 0.012 ml O2 g h (χ ± 95% CI). P. antarctica showed a mean ammonia-nitrogen excretion rate of 0.194 ± 0.042 μmol NH4-N g−1 h−1 (χ ± 95% CI). Based on current data, ingestion rates estimated in previous studies were sufficient to cover the meta- bolic requirements over the year classes 0–10. Metabolism stood out as the highest energy cost to the fish over the age intervals considered, initially commanding 89%, gradually declining to 67% of the annual energy costs as the fish aged from 0 to 10 years. Overall, the budget presented in the chapter shows good agreement between ingested and combusted energy, and supports the contention of a low-energy life- style for P. antarctica, but it also resembles that of other pelagic species in the high percentage of assimilated energy devoted to metabolism. It differs from more tem- perate coastal pelagic fishes in its large investment in reproduction and its pattern of slow steady growth throughout a relatively long lifespan.
    [Show full text]
  • Ecology of Fishes on Coral Reefs
    C:/ITOOLS/WMS/CUP-NEW/5644691/WORKINGFOLDER/AROM/9781107089181PRE.3D iii [1–14] 4.12.2014 6:17PM Ecology of Fishes on Coral Reefs EDITED BY Camilo Mora Department of Geography, University of Hawai‘i at Manoa, USA C:/ITOOLS/WMS/CUP-NEW/5644691/WORKINGFOLDER/AROM/9781107089181PRE.3D iv [1–14] 4.12.2014 6:17PM University Printing House, Cambridge CB2 8BS, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107089181 © Cambridge University Press 2015 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2015 Printed in the United Kingdom by [XX] A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data Ecology of fishes on coral reefs / edited by Camilo Mora, Department of Geography, University of Hawaii at Manoa, USA. pages cm Includes bibliographical references. ISBN 978-1-107-08918-1 1. Coral reef fishes. I. Mora, Camilo. QL620.45.E26 2015 597.177089–dc23 2014043414 ISBN 978-1-107-08918-1 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
    [Show full text]
  • Effect of Light on Juvenile Walleye Pollock Shoaling and Their Interaction with Predators
    MARINE ECOLOGY PROGRESS SERIES Vol. 167: 215-226, 1998 Published June 18 Mar Ecol Prog Ser l Effect of light on juvenile walleye pollock shoaling and their interaction with predators Clifford H. Ryer*, Bori L. Olla Fisheries Behavioral Ecology Group, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Hatfield Marine Science Center, Newport, Oregon 97365, USA ABSTRACT: Research was undertaken to examine the influence of light lntenslty on the shoaling behavior, activity and anti-predator behavior of juvenlle walleye pollock Theragra chalcogramrna. Under a 12 h light/l2 h dark photoperiod, juveniles displayed a diurnal shoaling and activity pattern, characterized by fish swimming in cohesive groups during the day, with a cessation of shoaling and decreased swlmmlng speeds at nlght. Prior studies of school~ngfishes have demonstrated distinct light thresholds below which school~ngabruptly ceases. To see if this threshold effect occurs in a predomi- nantly shoaling species, like juvenile walleye pollock, another experiment was undertaken in which illumination was lourered by orders of magnitude, glrrlng fish 20 mln to adapt to each light intensity Juvenlle walleye pollock were not characterized by a d~stinctlight threshold for shoaling; groups grad- ually dispersed as light levels decreased and gradually recoalesced as light levels increased. At light levels below 2.8 X 10.~pE SS' m-" juvenile walleye pollock were so dispersed as to no longer constitute a shoal. Exposure to simulated predation risk had differing effects upon fish behavior under light and dark cond~tionsBrief exposure to a mndc! prerlst~r:E !he .'ark c;i;ssd fish to ~WIIIIidsier, ior 5 or 6 min, than fish which had been similarly startled In the light.
    [Show full text]
  • Kahawai (Arripis Trutta), and Snapper (Chrysophrys Auratus)
    Ethology and sensory physiology associated with social organisation in yellow-eyed mullet (Aldrichetta forsteri), kahawai (Arripis trutta), and snapper (Chrysophrys auratus) by Karen Lewanne Middlemiss Submitted as a thesis in fulfilment of the requirements for the degree of Doctor of Philosophy The School of Biological Sciences University of Canterbury, Christchurch, New Zealand 2017 This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… ‒ ii ‒ Acknowledgements In the words of arguably the greatest naturalist humankind has ever known, and who since childhood has inspired my love of the natural world, “I wish the world was twice as big and half of it unexplored” – David Attenborough. Me too! My journey to becoming a biologist began in my ‘youth-adjacent’ years whilst working for the Royal New Zealand Air Force. I was on a five-month secondment at Scott Base with Antarctica New Zealand providing logistical support to hundreds of New Zealand scientists doing some amazing research during the summer of 2005/06. One of those scientists would nine years later become my doctoral supervisor; Professor Bill Davison. Together with then PhD student Dr. Esme Robinson, who became a dear friend and mentor in my early academic career, we spent many hours drilling holes in the ice-covered McMurdo Sound to catch research fish. I would later watch with intrigue as experiments were conducted.
    [Show full text]
  • Estimates of Shrimp Trawl Bycatch of Red Snapper (Lutjanus Campechanus) in the Gulf of Mexico
    Fishery Stock Assessment Models 817 Alaska Sea Grant College Program • AK-SG-98-01, 1998 Estimates of Shrimp Trawl Bycatch of Red Snapper (Lutjanus campechanus) in the Gulf of Mexico B.J. Gallaway LGL Ecological Research Associates, Inc., Bryan, Texas M. Longnecker Texas A&M University, Department of Statistics, College Station, Texas J.G. Cole LGL Ecological Research Associates, Inc., Bryan, Texas R.M. Meyer Meyers Chuck, Alaska Abstract Estimation of red snapper bycatch in the shrimp trawl fishery of the Gulf of Mexico has been a contentious issue. Estimates are generated by the National Marine Fisheries Service (NMFS) using a general linear model which establishes a relationship between resource trawl survey data and catch data from the fishery obtained by observers on shrimp fishing vessels. The more complete time series of resource trawl data is then used to predict commercial vessel CPUE which is multiplied by total fishing effort to determine bycatch. The estimates are characterized by exceptionally low R2 values and highly skewed residuals (70% of the catch observations were zeros). We have attempted to improve the estimates by using fewer and larger time-space cells, pooling catch and effort data to reduce the number of zeros contained in the analysis, incorporating significant inter- actions, and using epochs to guard against nonstationarity. The R2 values for the revised models are 2 to 3 times higher than the R2 for the base case, and the distribution of the residuals is greatly improved. The re- vised estimates in recent years average on the order of 30 to 47% lower than the NMFS estimates.
    [Show full text]
  • 3-18 April, 1996 2
    CRUISE REPORT CRUISE 5, RN "G.O. SARS", 3-18 April, 1996 2 Contents Author Summary O.A. Misund Introduction O.A. Misund The challenge of the herring migration: making optimal collective spatial decisions A. Fern6 Survey area O.A. Misund Methods O.A. Misund Biological sampling ofherring catches E. Meland Temperature distribution C. Hollingworth Herring distribution and migration O.A. Misund Biological status of herring E. Meland Evaluating the dynamics of fish shoals: measuring herring in the Norwegain Sea T .J. Pite her Phyto and zooplankton V. Melle Blue whiting O.A. Misund Herring and their zooplankton prey - the sampling challenge T. Knutsen Whale observations L. Nøttestad Appendix Design of marine reserve for the Norwegian spring-spawning herring S. Guenette Spatial distribution of herring stocks and its implications for regulation of fisheries S. Mackinson Costlbenefit functions and fish shoal size T.Lee Daily record of activity O.A. Misund 3 Summary The main purpose of the cruise was to conduct studies on spatial distribution and dynamics of migrating herring schools in relation to gradients in environmental factors such as temperature, light and prey distribution. In addition the north em part of the EU zone was surveyed to reveal ifNorwegian spring-spawning herring was present and the Svinøy environmental transect was tak en at the end of the cruise. Migrating Norwegian spring-spawning herring were recorded in an area between 67°N and 68° N and l o 20' W and 5° E. The herring occured in schools at 300-400 m depth in daytime, but rose to the surface and dispersed on same occasions at night.
    [Show full text]
  • Grobis, M.M., Pearish, S.P., Bell, A.M
    Animal Behaviour xxx (2012) 1e8 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Avoidance or escape? Discriminating between two hypotheses for the function of schooling in threespine sticklebacks Matthew M. Grobis a,*, Simon P. Pearish b, Alison M. Bell a,b a School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A. b Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A. article info In many species, there are antipredator benefits of grouping with conspecifics. For example, animals Article history: often aggregate to better avoid potential predators (the ‘avoidance hypothesis’). Animals also often group Received 31 August 2012 together in direct response to predators to facilitate escape (the ‘escape hypothesis’). The avoidance Initial acceptance 5 October 2012 hypothesis predicts that animals with previous experience with predation risk will aggregate more than Final acceptance 15 October 2012 animals without experience with predation risk. In contrast, the escape hypothesis predicts that Available online xxx immediate exposure to predation risk causes animals to aggregate. We simultaneously tested these two MS. number: A12-00660 nonexclusive hypotheses in threespine sticklebacks, Gasterosteus aculeatus. Schooling behaviour (time spent schooling, latency to school and time schooling in the middle of the school) was quantified with Keywords: a mobile model school. Fish that had been chased by a model predator in the past schooled more, started antipredator behaviour schooling faster and spent a marginally greater proportion of time schooling in the middle of the school avoidance hypothesis than fish that had not been chased.
    [Show full text]
  • Is Heightened-Shoaling a Good Candidate for Positive Emotional Behavior in Zebrafish?
    animals Article Is Heightened-Shoaling a Good Candidate for Positive Emotional Behavior in Zebrafish? Becca Franks 1,2,* ID , Courtney Graham 1,† and Marina A. G. von Keyserlingk 1 1 Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] (C.G.); [email protected] (M.A.G.v.K.) 2 Animal Studies, Department of Environmental Studies, New York University, New York, NY 10003, USA * Correspondence: [email protected] † Current address: Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada Received: 24 July 2018; Accepted: 22 August 2018; Published: 24 August 2018 Simple Summary: Despite increasing interest in fish welfare, we still know very little about positive emotions in fish. This study had two aims: (1) to characterize a previously undescribed social behavior in zebrafish, “heightened-shoaling”, and (2) to evaluate whether heightened-shoaling may be a good candidate for future research into positive emotional behavior in zebrafish. Observing six groups of zebrafish housed in 110 L tanks furnished with a sloping gravel substrate, rocks, and artificial plants (10 fish/tank), we found that heightened-shoaling is marked by tight group cohesion, high behavioral synchrony (all fish engaging in the same behaviors at the same time), and low agonism. Episodes of heightened-shoaling occurred in all six groups, but rarely at the same time (only once out of 31 episodes), suggesting that the onset of heightened-shoaling is driven by internal group dynamics rather than external influences. Heightened-shoaling also appeared to be self-reinforcing as it had sustained durations—typically lasting for over 7 min and sometimes lasting for nearly half-an-hour.
    [Show full text]
  • A Network Analysis Approach to Understanding Shark Behaviour
    A network analysis approach to understanding shark behaviour Submitted by David Jacoby to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Psychology September 2012 This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: __________________________ David Jacoby Ph.D Thesis ABSTRACT The mechanisms and functions of shark grouping behaviour have received relatively little scientific attention to date. The current widespread use of social network analysis to study animal groups, in concert with rapid advances in animal tracking technology, now allows us to test specific hypotheses about how and why sharks form groups. This thesis uses replicated laboratory experiments to investigate some of the mechanisms underpinning aggregation in a model species of benthic, oviporous elasmobranch, the small spotted catshark (Scyliorhinus canicula L. 1758; Scyliorhinidae). Acoustic tracking of this species in the wild is also conducted to explore how network analyses can be adopted to study the localized movements, habitat connectivity and ranging behaviour of adult sharks. Groups of juvenile S. canicula were characterized by non-random social preferences, crucially, only when individuals were familiar with one another suggesting social recognition is important in young sharks of this species. Genetic analyses of parent and offspring DNA revealed very high levels of multiple paternity in this species, likely due to male sexual harassment and multiple mating, which leads to increased genetic diversity between juvenile sharks.
    [Show full text]
  • The Impact of Anthropogenic Noise on Fish Behavior, Communication, and Development
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-4-2019 The Impact of Anthropogenic Noise on Fish Behavior, Communication, and Development Julie Butler Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Integrative Biology Commons Recommended Citation Butler, Julie, "The Impact of Anthropogenic Noise on Fish Behavior, Communication, and Development" (2019). LSU Doctoral Dissertations. 5086. https://digitalcommons.lsu.edu/gradschool_dissertations/5086 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE IMPACT OF ANTHROPOGENIC NOISE ON FISH BEHAVIOR, COMMUNICATION, AND DEVELOPMENT A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Julie Butler B.S. Biology, Texas A&M University, 2013 B.S. Forensic and Investigative Sciences, Texas A&M University, 2013 December 2019 ACKNOWLEDGEMENTS First and foremost, I would like to thank my research advisor, Dr. Karen Maruska. You have made me a better scientist, student, writer, and most importantly, a better person. Thank you for your endless support and encouragement, for passing on your wealth of knowledge and skills, for creating a stimulating and fun environment, and for always fighting for us. From conversations about science, life in academia, cats, football (go Cowboys!), and more, I have enjoyed every minute of working with you.
    [Show full text]
  • Trait-Based Diet Selection: Prey Behaviour and Morphology Predict Vulnerability to Predation in Reef Fish Communities
    Trait-based diet selection: Prey behaviour and morphology predict vulnerability to predation in reef fish communities Green, S. J., & Côté, I. M. (2014). Trait‐based diet selection: Prey behaviour and morphology predict vulnerability to predation in reef fish communities. Journal of Animal Ecology, 83(6), 1451-1460. doi:10.1111/1365-2656.12250 10.1111/1365-2656.12250 John Wiley & Sons, Inc. Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse Received Date : 06-Feb-2014 Revised Date : 30-Apr-2014 Accepted Date : 08-May-2014 Article type : Standard Paper Editor : Stan Boutin Section : Community Ecology Running headline: Prey traits determine predation vulnerability Article Trait-based diet selection: Prey behaviour and morphology predict vulnerability to predation in reef fish communities Stephanie J. Greena,b* and Isabelle M. Côtéa aDepartment of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC Canada V5A 1S6; bDepartment of Zoology, Oregon State University, Corvallis, Oregon, 97331-2914 USA *Corresponding author: Email: [email protected] Tel: +1 (541) 908-3839 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: Accepted 10.1111/1365-2656.12250 This article is protected by copyright. All rights reserved. Summary 1. Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage-specific.
    [Show full text]
  • Different Prey
    Journal of Experimental Marine Biology and Ecology 460 (2014) 193–196 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Experimental test of preference by a generalist piscivore on morphologically- and behaviorally- different prey Brittany J. Hall-Scharf a,b,⁎, Christopher D. Stallings b a Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 8th Avenue SE, St. Petersburg, FL 33701, USA b University of South Florida, College of Marine Science, 140 7th Street S, St. Petersburg, FL 33701, USA article info abstract Article history: Generalist predators can have wide diet breadths that are influenced by the relative abundance of different prey Received 4 June 2014 available to them, making it difficult to determine prey preference from field observations. To ascertain prefer- Received in revised form 11 July 2014 ence, controlled experimentation is required that accounts for prey-specific variation in the time it takes to Accepted 12 July 2014 search, capture, and consume the prey; all of which can be affected by its morphology and behavior. Based on Available online xxxx previous stomach content studies, Pinfish, Lagodon rhomboides and Clown Gobies, Microgobius gulosus, comprise Keywords: a substantial proportion of the diet of Spotted Seatrout, Cynoscion nebulosus, despite strong differences in the fi fi Mesocosm morphology and behavior of these prey. Pin sh are demersal, deep-bodied sh that form loose aggregations Seagrass with strong dorsal- and anal-fin spines that shoal in large aggregations, whereas Clown Gobies are benthic, Optimal foraging shallow-bodied fish with weaker fin spines and are solitary but evenly distributed over the substrate.
    [Show full text]