Desert Tortoise: Fact Or Fiction?

Total Page:16

File Type:pdf, Size:1020Kb

Desert Tortoise: Fact Or Fiction? DESERT TORTOISE: FACT OR FICTION? Students will enjoy this GETTING STARTED 4. When it gets too hot outside the fun team game that Divide your class into two teams. Have desert tortoise goes underground. will determine who each team gather in separate parts of TRUE. It will dig a burrow with its knows the most about the classroom, and then have each one front legs and will stay there when the Sonoran Desert come up with a desert tortoise related it’s too hot or too cold. It will also hibernate in its burrow. The burrow tortoise. name for their team. The instructor will will often be made in the bank of a read each of the statements below, ad- wash or under a bush. dressing the statements to both teams. Each team is given a one minute hud- 5. By counting the number of rings on the shell of a tortoise you can Arizona Science dle time to decide whether the state- guess it’s approximate age. Standards: ment is a fact or whether it is fiction. TRUE. Draw a picture of a tortoise SC04-S3C1-01 After the team responds, the instructor, using the information given on this shell on the board like this: (It does SC03-S3C1-02 not have to be complete, just give sheet, tells the class about any infor- them the idea.) SC04-S4C1-02 mation that the students may have not come up with on their own. The score SC04-S4C4-02 for each team is kept on the board. QUESTIONS 1. A desert tortoise will climb out of its shell when it grows too big and will move into a large one. As you draw it explain that the shell FALSE. Its shell is its backbone and is made up of many sections and that ribs and grows with the rest of the ani- very year a new ring is added to eve- mal. ry section. During the winter, when the tortoise is hibernating the shell 2. The desert tortoise never needs to stops growing. Because of the yearly drink water. grow-stop pattern, one ring is added every year. Usually though, the rings FALSE. It gets most of its water from on the sections of older tortoises food that it eats but still needs to occa- have been worn down and you can sionally drink water. no longer count all of them. 3. Desert tortoises think that it’s fun- 6. The desert tortoise has many ny to urinate on people. sharp teeth. FALSE. They collect water in their FALSE. It is toothless, like all turtles. bladder and save it for their body to Its large tongue helps push food back use when no other water is available. into its mouth. When a stranger picks up a wild tor- 7. It is a vegetarian. toise, it gets scared and will often loose its saved water. This can cause the tor- TRUE. It eats mostly grasses, and toise to die of dehydration if it doesn’t when they are in season, flowers and find any more water to drink soon. cactus fruit. Desert Discovery Activities ©2012, Arizona-Sonora Desert Museum DESERT TORTOISE: FACT OR FICTION? 8. The average desert tortoise lives to 12. If you really want to have a be 100 years old. desert tortoise in your yard you FALSE. Not quite that old, but they might be able to adopt one from the Desert Museum. can get to be 80 years old, about as long as the average human. TRUE. The Desert Museum has a “tortoise orphanage”. Any desert 9. Cutting into the shell of a desert tortoise that has lived as a pet should tortoise won’t hurt it. not be returned to the wild because they might be carrying a respiratory FALSE. Remember that the shell is disease and we don’t want them to live, growing tissue – bone, skin, blood infect wild tortoises. Since they can and nerve – and if it is cut it hurts. It is live many years, sometimes they not dead like our fingernails. Also, a outlive their “owners”, so we are a cut shell can cause infections to pass place that they can be returned to instead of the wild. We then find into the tortoises internal body cavity, good homes for them. and this could lead to the animal’s death. 13. The very favorite foods of a pet desert tortoise are bananas, toma- 10. It is illegal to collect wild desert toes and lettuce. tortoises. FALSE. These are very unhealthy TRUE. In Arizona the tortoise is a pro- foods for a tortoise and will cause tected species. It is not an endangered the animal to die, if these are the on- species, but if it did not have the law to ly foods that it is offered. protect it, it would probably be over 14. An adult Sonoran Desert tor- collected, and this could lead to it be- toise can weigh as much as 30 coming very rare and even endangered. pounds. 11. Building homes, schools and FALSE. On average adult Sonoran roads for people are not a problem Desert Tortoise weigh between 10- for tortoises. 15 pounds. FALSE. The biggest problem that de- 15. Desert tortoise spend most of sert tortoises face are habitat loss and their time under the ground in a burrow. habitat fragmentation. They are some- times hit by cars while crossing roads TRUE. They are one of the most elu- and by off-road vehicles while they are sive inhabitants of the desert, spend- ing up to 95% of its time under- out and about in the desert. ground to escape the heat of the summer and the cold of winter. 16. Desert tortoise are not able to make any sounds. FALSE. They are able to make hiss- es, pops and poink sounds, perhaps as fear and distress calls. Males to grunt when mating. Desert Discovery Activities ©2012, Arizona-Sonora Desert Museum .
Recommended publications
  • Egyptian Tortoise (Testudo Kleinmanni)
    EAZA Reptile Taxon Advisory Group Best Practice Guidelines for the Egyptian tortoise (Testudo kleinmanni) First edition, May 2019 Editors: Mark de Boer, Lotte Jansen & Job Stumpel EAZA Reptile TAG chair: Ivan Rehak, Prague Zoo. EAZA Best Practice Guidelines Egyptian tortoise (Testudo kleinmanni) EAZA Best Practice Guidelines disclaimer Copyright (May 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA Reptile TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation. EAZA Preamble Right from the very beginning it has been the concern of EAZA and the EEPs to encourage and promote the highest possible standards for husbandry of zoo and aquarium animals.
    [Show full text]
  • Manual for the Differentiation of Captive-Produced and Wild-Caught Turtles and Tortoises (Testudines)
    Image: Peter Paul van Dijk Image:Henrik Bringsøe Image: Henrik Bringsøe Image: Andrei Daniel Mihalca Image: Beate Pfau MANUAL F O R T H E DIFFERENTIATION OF CAPTIVE-PRODUCED AND WILD-CAUGHT TURTLES AND TORTOISES (TESTUDINES) PREPARED BY SPECIES360 UNDER CONTRACT FOR THE CITES SECRETARIAT Manual for the differentiation of captive-produced and wild-caught turtles and tortoises (Testudines) This document was prepared by Species360 under contract for the CITES Secretariat. Principal Investigators: Prof. Dalia A. Conde, Ph.D. and Johanna Staerk, Ph.D., Species360 Conservation Science Alliance, https://www.species360.orG Authors: Johanna Staerk1,2, A. Rita da Silva1,2, Lionel Jouvet 1,2, Peter Paul van Dijk3,4,5, Beate Pfau5, Ioanna Alexiadou1,2 and Dalia A. Conde 1,2 Affiliations: 1 Species360 Conservation Science Alliance, www.species360.orG,2 Center on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Denmark, 3 The Turtle Conservancy, www.turtleconservancy.orG , 4 Global Wildlife Conservation, globalwildlife.orG , 5 IUCN SSC Tortoise & Freshwater Turtle Specialist Group, www.iucn-tftsG.org. 6 Deutsche Gesellschaft für HerpetoloGie und Terrarienkunde (DGHT) Images (title page): First row, left: Mixed species shipment (imaGe taken by Peter Paul van Dijk) First row, riGht: Wild Testudo marginata from Greece with damaGe of the plastron (imaGe taken by Henrik BrinGsøe) Second row, left: Wild Testudo marginata from Greece with minor damaGe of the carapace (imaGe taken by Henrik BrinGsøe) Second row, middle: Ticks on tortoise shell (Amblyomma sp. in Geochelone pardalis) (imaGe taken by Andrei Daniel Mihalca) Second row, riGht: Testudo graeca with doG bite marks (imaGe taken by Beate Pfau) Acknowledgements: The development of this manual would not have been possible without the help, support and guidance of many people.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • Indian Star Tortoise Care
    RVC Exotics Service Royal Veterinary College Royal College Street London NW1 0TU T: 0207 554 3528 F: 0207 388 8124 www.rvc.ac.uk/BSAH INDIAN STAR TORTOISE CARE Indian star tortoises originate from the semi-arid dry grasslands of Indian subcontinent. They can be easily recognised by the distinctive star pattern on their bumpy carapace. Star tortoises are very sensitive to their environmental conditions and so not recommended for novice tortoise owners. It is important to note that these tortoises do not hibernate. HOUSING • Tortoises make poor vivarium subjects. Ideally a floor pen or tortoise table should be created. This needs to have solid sides (1 foot high) for most tortoises. Many are made out of wood or plastic. A large an area as possible should be provided, but as the size increases extra basking sites will need to be provided. For a small juvenile at least 90 cm (3 feet) long x 30 cm (1 foot) wide is recommended. This is required to enable a thermal gradient to be created along the length of the tank (hot to cold). • Hides are required to provide some security. Artificial plants, cardboard boxes, plant pots, logs or commercially available hides can be used. They should be placed both at the warm and cooler ends of the tank. • Substrates suitable for housing tortoises include newspaper, Astroturf, and some of the commercially available substrates. Natural substrate such as soil may also be used to allow for digging. It is important that the substrates either cannot be eaten, or if they are, do not cause blockages as this can prove fatal.
    [Show full text]
  • Aldabrachelys Arnoldi (Bour 1982) – Arnold's Giant Tortoise
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — AldabrachelysTortoise and Freshwater arnoldi Turtle Specialist Group 028.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.028.arnoldi.v1.2009 © 2009 by Chelonian Research Foundation • Published 18 October 2009 Aldabrachelys arnoldi (Bour 1982) – Arnold’s Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMARY . – Arnold’s giant tortoise, Aldabrachelys arnoldi (= Dipsochelys arnoldi) (Family Testudinidae), from the granitic Seychelles, is a controversial species possibly distinct from the Aldabra giant tortoise, A. gigantea (= D. dussumieri of some authors). The species is a morphologi- cally distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered synonymous with that species by many researchers. Captive reared juveniles suggest that there may be a genetic basis for the morphotype and more detailed genetic work is needed to elucidate these relationships. The species is the only living saddle-backed tortoise in the Seychelles islands. It was apparently extirpated from the wild in the 1800s and believed to be extinct until recently purportedly rediscovered in captivity. The current population of this morphotype is 23 adults, including 18 captive adult males on Mahé Island, 5 adults recently in- troduced to Silhouette Island, and one free-ranging female on Cousine Island. Successful captive breeding has produced 138 juveniles to date.
    [Show full text]
  • Seychelles Giant Tortoise
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — Aldabrachelys Tortoise and Freshwater hololissa Turtle Specialist Group 061.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.061.hololissa.v1.2011 © 2011 by Chelonian Research Foundation • Published 31 December 2011 Aldabrachelys hololissa (Günther 1877) – Seychelles Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge, CB1 7BX United Kingdom [[email protected]] SUMMARY . – The Seychelles Giant Tortoise, Aldabrachelys hololissa (= Dipsochelys hololissa) (Family Testudinidae) is a controversial species possibly distinct from the Aldabra giant tor- toise, A. gigantea (= D. dussumieri of some authors). The species is a morphologically distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered by many researchers to be either synonymous with or only subspecifically distinct from that taxon. It is a domed grazing species, differing from the Aldabra tortoise in its broader shape and reduced ossification of the skeleton; it differs also from the other controversial giant tortoise in the Seychelles, the saddle-backed morphotype A. arnoldi. Aldabrachelys hololissa was apparently extirpated from the wild in the 1800s and is now known only from 37 adults, including 28 captive, 1 free-ranging on Cerf Island, and 8 on Cousine Island, 6 of which were released in 2011 along with 40 captive bred juveniles. Captive reared juveniles show that there is a presumed genetic basis to the morphotype and further genetic work is needed to elucidate this.
    [Show full text]
  • Cytogenetics and Morphology of Two Tortoise Species of the Genus Chelonoidis (Fitzinger, 1835) (Testudines)
    Thesis Abstract Cytogenetics and morphology of two tortoise species of the genus Chelonoidis (Fitzinger, 1835) (Testudines) T.L. Silva 2011. Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brasil. MSc. thesis. Orienting Prof.: Maria Tercília Vilela de Azeredo Oliveira. Co-orienting Prof.: Claudia Regina Bonini Domingos. DOI 10.4238/vol10-2ta034 The reptiles were reduced in number of species since the time that they ruled the earth until today. The tortoises have been poorly studied, particularly their morphological and cytoge- netic features. We examined the species Chelonoidis carbonaria and C. denticulata, terrestrial tortoises representative of two contrasting biomes (Cerrado and Amazonia), to check for the existence of a possible C. carbonaria morphotype, and describe their karyotypes. The animals were collected from the “Reginaldo Uvo Leone” breeding farm, located in Tabapuã, SP. We made measurements of external morphology, in order to evaluate the morphological character- istics that could effectively allow differentiation of these two species of Brazilian tortoises, also examining a C. carbonaria morphotype that differs in color and size patterns established for this species. This C. carbonaria morphotype showed morphological characteristics intermediate be- tween these two species described. Cytogenetic studies gave a chromosome number of 2n = 52 for all three groups. G-banding did not give good reproducibility and consistency in the banding patterns. In C. carbonaria males, C-banding technique revealed constitutive heterochromatin in two microchromosomes and in two centromeric regions of macrochromosomes; in females only two microchromosomes showed specific staining. The species C. denticulata and the C. carbonaria morphotype did not have evident heterochromatic blocks.
    [Show full text]
  • Giant Tortoises with Pinta Island Ancestry Identified In
    Biological Conservation 157 (2013) 225–228 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Short communication The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in Galápagos a, a a,b c d Danielle L. Edwards ⇑, Edgar Benavides , Ryan C. Garrick , James P. Gibbs , Michael A. Russello , Kirstin B. Dion a, Chaz Hyseni a, Joseph P. Flanagan e, Washington Tapia f, Adalgisa Caccone a a Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA b Department of Biology, University of Mississippi, MS 38677, USA c College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA d Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7 e Houston Zoo, Houston, TX 77030, USA f Galápagos National Park Service, Puerto Ayora, Galápagos, Ecuador article info abstract Article history: The death of Lonesome George, the last known purebred individual of Chelonoidis abingdoni native to Received 22 August 2012 Pinta Island, marked the extinction of one of 10 surviving giant tortoise species from the Galápagos Archi- Received in revised form 9 October 2012 pelago. Using a DNA reference dataset including historical C. abingdoni and >1600 living Volcano Wolf Accepted 14 October 2012 tortoise samples, a site on Isabela Island known to harbor hybrid tortoises, we discovered 17 individuals with ancestry in C. abingdoni. These animals belong to various hybrid categories, including possible first generation hybrids, and represent multiple, unrelated individuals. Their ages and relative abundance sug- Keywords: gest that additional hybrids and conceivably purebred C.
    [Show full text]
  • Galapagos Tortoise Programme
    Galapagos Tortoise Programme Large male Galapagos giant tortoise on Santa Cruz Island feeding on Sida rhombifolia leaves. Photo Stephen Blake. Galapagos tortoises The goal of the GALAPAGOS TORTOISE PROGRAMME is to assist the Galapagos National Park (GNP) • Largest terrestrial reptiles on earth. to effectively conserve giant Galapagos tortoises by conducting cutting edge applied research and • Weigh up to 250Kg. developing an inspirational tortoise-based outreach and education programme. Our research focuses • Lifespan over 150 years. on understanding the movement strategies of Galapagos tortoises and their ecological impacts and • Colonized Galapagos from South conservation implications. We use state of the art Global Positioning Systems (GPS) tags to monitor America some 2-3 million years ago. tortoise movements coupled with traditional ecological research including surveys on foot to assess the • Once lived on 10 islands. distribution and abundance of tortoises, observations of feeding behaviour, and sampling of vegetation Today, wild tortoises are found on structure and composition. Our research drives an outreach and education programme for young people just 6 islands. on Galapagos, in the USA and UK. We collaborate with institutions such as the Galapagos National Park • May have comprised 15 taxa. and Ecology Project International to introduce students to practical field-based research and classroom Today, only 10 are recognized. activities. To increase the effectiveness of our science for conservation, we share our tortoise movement data at www.movebank.org and on Facebook at (www.facebook.com/galapagostortoiseproject). The Programme The programme is coordinated by the Max Planck Institute • Initiated in 2009. and SUNY College of Environmental Science and Forestry • First GPS telemetry study of giant in collaboration with the Galapagos National Park Service, tortoises.
    [Show full text]
  • ALDABRA GIANT TORTOISE Aldabrachelys Gigantea
    ALDABRA GIANT TORTOISE Aldabrachelys gigantea Location: The Aldabra giant tortoise inhabits the Aldabra Islands, a coral atoll comprised of 4 islands in the Seychelles, which is located between the coast of Kenya and the northern tip of Madagascar. The Aldabra giant tortoise occurs in many different habitats. The largest tortoise concentrations are found on the grasslands called platins; the grasslands are often dotted with trees and bushes. It also frequents scrublands, mangrove swamps and coastal dunes. Diet: These animals are primarily herbivores with the ability to both graze and browse. In the drier areas, they graze mostly on sedges, and a combination of native species of grasses and herbs. Many of these distinct plants are naturally dwarfed and grow their seeds not from the tops of the plants, but closer to the ground to avoid the tortoises’ close cropping jaws. In the wooded and scrub areas, tortoises browse on many types of woody plants. A number of species are readily eaten, and some show a conspicuous browse line about 3 feet above the ground, which is about as high as the tortoises can stretch their necks. Life Cycle: Aldabra giant tortoises are found both individually and in herds. They mainly feed in the mornings and continue until the temperature becomes too hot. Sheltering trees or bushes are necessary to escape the extreme mid- day sun; some tortoises cool themselves in pools or mud holes. Mating of Aldabra giant tortoises usually occurs between February and May. The eggs are carried within the female’s body for about 2.5 months. During the dry season, the female digs a flask-shaped cavity where she deposits her eggs.
    [Show full text]
  • Characterization of Texas Tortoise (Gopherus Berlandieri)
    CHARACTERIZATION OF TEXAS TORTOISE (GOPHERUS BERLANDIERI) HOME RANGES, HABITAT USE, AND LANDSCAPE-SCALE HABITAT CONNECTIVITY IN CAMERON COUNTY, TEXAS by Daniel Alexander Guerra, B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Population and Conservation Biology December 2020 Committee Members: Joseph Veech, Chair Todd Esque Todd Swannack COPYRIGHT by Daniel Alexander Guerra 2020 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Daniel Alexander Guerra, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS I would like to acknowledge the tireless work of my committee – Dr. Joseph Veech, Dr. Todd Esque, and Dr. Todd Swannack. The hours, labor, and equipment that has been given to me made this project possible. The National Parks Service, especially Dr. Jane Carlson of the Gulf Coast Inventory Network and Rolando Garza of Palo Alto National Historical Battlefield, has been extremely generous in sharing their expertise, land and time in the field. The Western Ecological Laboratory of the United States Geological Service headed by Dr. Todd Esque provided equipment and guidance that was vital to this project, as well as the field effort of Dr.
    [Show full text]
  • Nest Guarding in the Gopher Tortoise (Gopherus Polyphemus)
    148 CHELONIAN CONSERVATION AND BIOLOGY, Volume 11, Number 1 – 2012 Chelonian Conservation and Biology, 2012, 11(1): 148–151 g 2012 Chelonian Research Foundation Nest Guarding in the Gopher Tortoise (Gopherus polyphemus) 1 1 ANDREW M. GROSSE ,KURT A. BUHLMANN , 1 1 BESS B. HARRIS ,BRETT A. DEGREGORIO , 2 1 BRETT M. MOULE ,ROBERT V. H ORAN III , AND 1 TRACEY D. TUBERVILLE 1Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina 29802 USA [[email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]]; 2South Carolina Department of Natural Resources, Columbia, South Carolina 29201 USA [[email protected]] ABSTRACT. – Nest guarding is rarely observed among reptiles. Specifically, turtles and tortoises are generally perceived as providing no nest protection once the eggs are laid. Here, we describe observations of nest guarding by female gopher tortoises (Gopherus poly- phemus). Nest guarding among reptiles is considered uncom- mon (Reynolds et al. 2002). Although many crocodilians are known to protect their nests and offspring from potential predators, turtles and tortoises are generally NOTES AND FIELD REPORTS 149 perceived as providing no parental care once the egg around the southeastern United States, have been laying process is complete. However, some tortoise translocated and penned in 1-ha enclosures for at least species have been observed defending their nests from one year to increase site fidelity by limiting dispersal after potential predators, namely the desert tortoise (Gopherus pen removal (Tuberville et al. 2005). One such pen was agassizii; Vaughan and Humphrey 1984) and Asian removed in July 2009, and all tortoises (n 5 14) were brown tortoise (Manouria emys; McKeown 1990; Eggen- equipped with Holohil (Ontario, Canada) AI-2F transmit- schwiler 2003; Bonin et al.
    [Show full text]