A Reconnaissance of Mesozoic Strata in Northern

Total Page:16

File Type:pdf, Size:1020Kb

A Reconnaissance of Mesozoic Strata in Northern A reconnaissance of mesozoic strata in nothern Yuma County, southwestern Arizona Item Type text; Thesis-Reproduction (electronic) Authors Marshak, R. Stephen Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 05:01:15 Link to Item http://hdl.handle.net/10150/566541 A RECONNAISSANCE OF MESOZOIC STRATA IN NORTHERN YUMA COUNTY, SOUTHWESTERN ARIZONA by R. Stephen Marshak A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVAL BY THESIS DIRECTOR This theses has/b^en approved on the date shown below: ?.J. CONEY/ Professor of Geology ACKNOWLEDGMENTS I am grateful to the members of my committee, Drs. Peter Coney, George Davis, and Wesley Peirce, for their assistance in this project. Support for this research was generously provided by the State of Arizona Bureau of Geology and Mineral Technology, and I am grateful to - the members of the Bureau staff, especially Wesley Peirce, Stanley Keith, and Joseph Lavoie, for their advice and encouragement throughout this project. Gregory McNew, George Sanders, and Robert Schafer, of the Department of Geosciences, assisted with the petrographic studies. Support for the preparation of thin sections was provided from the Bert S. Butler scholarship fund of the Department of Geosciences. I appreciate the information provided by Stephen Reynolds, Ed DeWitt, W. J. Crowell, and Brad Robison, who are or were students of the Department of Geosciences. My sincere thanks are extended to my friends at The University of Arizona for their moral support when it was needed most. Stanley Keith and Paula Trever helped in the field on my last trip there, when the thermometer read 117°F. My appreciation also goes to my parents, Robert and Ruth Marshak, who have encouraged me in all stages of my education.’. Finally, I would like to express my deepest gratitude to my fiancee, Kathryn Collin, who edited and typed four drafts of the manuscript, and without whose love and support this project would never have been completed. iii TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS. ...................................... vi LIST OF T A B L E S ........................ x A B S T R A C T ........................................................ xi 1. INTRODUCTION .................................................. 1 Statement of the Problem ................. History of Geologic Study in Yuma County . H UJ Methodology and Terminology............... 2. THE DOME ROCK MOUNTAINS....................................... 7 Lithologies................................................ 7 Mesozoic Strata....................................... 7 Bounding Terranes..................................... 23 Contact Relations.......................................... 33 Structural Features................................... .. 40 F a u l t s ................................................ 40 Folds.................................................. 41 Other Structural Features.................. 41 Discussion....................... 48 Stratigraphy.................... 48 Structure.............................................. 50 Age Constraints............ 52 3. THE LITTLE HARQUAHALA MOUNTAINS. .............................. 54 Lithologies................................................ 54 Mesozoic Strata.............. 54 Bounding Terranes........................ 60 Contact Relations.......................................... 62 Structural Features....................................... 62 Folds and F a u l t s ..................................... 62 Discussion............ 63 Stratigraphy.......................... 63 Age Constraints....................................... 63 iv V TABLE OF CONTENTS— Continued Page 4. THE GRANITE WASH MOUNTAINS................................... 65 Lithologies................................................ 65 Mesozoic Strata....................................... 65 Bounding Terranes..................................... 72 Contact Relations......................................... 74 Structural Features.......... 74 Folds.................. 74 Faults ........................................ 76 Other Structural Features............................. 76 Discussion.............. 76 Stratigraphy .......................................... 76 Age Constraints........................................ 80 5. THE PLOMOSA, BUCKSKIN, AND NORTHERN DOME ROCK MOUNTAINS. 82 Plomosa Mountains.......................................... 82 Lithologies............................................ 82 Contact Relations..................................... 88 Discussion ............................................ 90 Buckskin Mountains........................................ 91 Lithologies............................................ 91 Field Relations....................................... 94 Discussion............................................ 94 Northern Dome Rock Mountains............................. 95 6. SUMMARY, CORRELATION, AND CONCLUSION......................... 96 Summary.................................................... 96 Correlation.................................................. 103 Conclusion.................................................. 106 LIST OF REFERENCES 108 LIST OF ILLUSTRATIONS Figure Page 1. Location Map of Areas in Yuma County Mapped by Wilson (1960) and referred to on the Geologic Map of Arizona as "Mesozoic Sedimentary Rocks"................ 2 2. Newspaper Report Concerning the Discovery of a New Mountain Range in Yuma County........................... 5 3. Location Map Showing Mapped Areas and Major Contacts Studied in the Dome Rock Mountains..................... 8 4. Distance Photograph of the Central Dome Rock Mountains, Showing Outcrops of Mesozoic Strata..................... 16 5. Schematic Stratigraphic Column and Strip Map of the Eastern Flank of the Dome Rock Mountains.......... (pocket) 6. Schematic Chart Showing the Range of Individual Lithologies in the Section of Mesozoic Strata of the Dome Rock Mountains............................. 17 7. Photomicrograph of Calcareous Quartz Sandstone From the Dome Rock Mountains........................ 18 8. Photograph of Conglomerate Outcrop From Unit A of the Dome Rock Mountains.................................. 19 9. Photomicrograph of Greywacke With Possible Tuffaceous Component. ....................... 21 10. Photograph of Granule Conglomerate Outcrop in the Dome Rock Mountains.......... 22 11. Photomicrograph of the Feldspathic Greywacke of the Dome Rock Mountains................................. 24 12. Distance Photograph of the Meta-Volcanic Terrane of the Dome Rock Mountains................................. 26 13. Photograph and Tracing Showing Contact of Mesozoic Strata With Meta-Basalt on La Cholla Mountain. ..... 27 vi vii LIST OF ILLUSTRATIONS— Continued Figure Page i 14. Reconnaissance Geologic Map of the Copper Bottom Pass Area, Dome Rock Mountains, Arizona ................. (pocket) 15. Photomicrograph of Meta-Crystalline Tuff From the • Dome Rock Mountains...................................... 28 16. Photograph of Coarse Meta-Crystalline Tuff Outcrop in the Copper Bottom Pass Area of the Dome Rock Mountains ....................................... 29 17. Photomicrograph of Dark Grey Meta-Volcanic Macke of Cunningham Mountain, in the Dome Rock Mountains. 31 18. (A) Photomicropgrah of Mylonite Derived From Meta- Crystalline Tuff (B) Photomicrograph of Mylonite Derived From Dark Grey Meta-Volcanic Macke . ............ 32 19. Reconnaissance Geologic Map of the Southern End of the Dome Rock Mountains..................... (pocket) 20. Distance Photograph of Meta-Crystalline Tuff Outcrop at the Southern End of the Dome Rock Mountains .... 34 21. Photographs and Tracing of Dark Grey Meta-Volcanic Macke in Contact Mith Mesozoic Strata.................. 36 22. Photograph of Calcareous Quartz Sandstone — Mylonite Contact........................... ..................... 37 23. Map Showing Bending of Foliation of the Meta-Volcanic Terrane Into Parallelism Mith the Cunningham Mountain F a u l t ........................................ 39 24. Photograph and Tracing of Intrafolial Folds at the Copper Bottom Mine, Dome Rock Mountains................. 42 25. Photograph Showing High Angle Between Bedding and Foliation Planes in a Layer of Calcareous Quartz Sandstone on La Cholla Mountain.......................... 44 26. Equal Angle Lower Hemisphere Projections
Recommended publications
  • Curriculum Vita - Stephen J
    Curriculum Vita - Stephen J. Reynolds School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404 (480) 965-9049 (work) Website: http://reynolds.asu.edu email: [email protected] Degrees/Registration University of Texas, El Paso: B.S., Geology, 1974 University of Arizona: M.S., Geosciences, 1977, Ph.D., Geosciences,1982 Arizona Registered Geologist #26773 (1993-present) Recent Professional Experience Arizona State University, Dept. of Geology: Professor (6/97 to present), Associate Professor (8/91 to 6/97). Teaching responsibilities include Advanced Geologic Field Mapping, Advanced Structural Geology, Applied Arizona Geology, Cordilleran Regional Geology, Geology of Arizona, Geotectonics, Introductory Geology, Orogenic Systems, Summer Field Geology, Methods of Geoscience Teaching ASU Center for Research on Education in Science, Mathematics, Engineering, and Technology, Associate Director (6/99 to present); chairman of founding committee. Arizona Geological Survey and Arizona Bureau of Geology and Mineral Technology: Research Geologist (6/88 to 7/91), Associate Research Geologist (6/87 to 6/88); Assistant Research Geologist (2/81 to 6/87). University of Arizona, Dept. of Geosciences: Visiting Associate Professor, (1991 to ~1997); Adjunct Associate Research Scientist (1987 to 1991); Research Associate and Assistant (1/75 to 12/80); Teaching Assistant (8/74 to 7/75) Geologist and Consulting Geologist: Clients include Animas Resources (2007 to present), Pediment Exploration, Ltd. (2007 to present), Clear Creek
    [Show full text]
  • Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona
    2.SOB nH in ntoiOGIGM. JAN 3 1 1989 Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona U.S. GEOLOGICAL SURVEY BULLETIN 1701-C Chapter C Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona By ED DE WITT, S.M. RICHARD, J.R. HASSEMER, and W.F. HANNA U.S. Geological Survey J.R. THOMPSON U.S. Bureau of Mines U.S. GEOLOGICAL SURVEY BULLETIN 1701 MINERAL RESOURCES OF WILDERNESS STUDY AREAS- WEST-CENTRAL ARIZONA AND PART OF SAN BERNARDINO COUNTY, CALIFORNIA U. S. GEOLOGICAL SURVEY Dallas L Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1988 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publlcatlon Data Mineral resources of the Harquahala Mountains wilderness study area, La Paz and Maricopa counties, Arizona. (Mineral resources of wilderness study areas west-central Arizona and part of San Bernardino County, California ; ch. C) (U.S. Geological Survey bulletin ; 1701-C) Bibliography: p. Supt. of Docs, no.: I 19.3:1701-C 1. Mines and mineral resources Arizona Harquahala Mountains Wilderness. 2. Harquahala Mountains (Ariz.) I. DeWitt, Ed. II. Series. III. Series: U.S. Geological Survey bulletin ; 1701. QE75.B9 no. 1701-C 557.3 s [553'.09791'72] 88-600012 [TN24.A6] STUDIES RELATED TO WILDERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S.
    [Show full text]
  • Department of the Interior U.S
    DEPARTMENT OF THE INTERIOR U.S. FISH AND WILDLIFE SERVICE REGION 2 DIVISION OF ENVIRONMENTAL CONTAMINANTS CONTAMINANTS IN BIGHORN SHEEP ON THE KOFA NATIONAL WIL DLIFE REFUGE, 2000-2001 By Carrie H. Marr, Anthony L. Velasco1, and Ron Kearns2 U.S. Fish and Wildlife Service Arizona Ecological Services Office 2321 W. Royal Palm Road, Suite 103 Phoenix, Arizona 85021 August 2004 2 ABSTRACT Soils of abandoned mines on the Kofa National Wildlife Refuge (KNWR) are contaminated with arsenic, barium, mercury, manganese, lead, and zinc. Previous studies have shown that trace element and metal concentrations in bats were elevated above threshold concentrations. High trace element and metal concentrations in bats suggested that bighorn sheep also may be exposed to these contaminants when using abandoned mines as resting areas. We found evidence of bighorn sheep use, bighorn sheep carcasses, and scat in several abandoned mines. To determine whether bighorn sheep are exposed to, and are accumulating hazardous levels of metals while using abandoned mines, we collected soil samples, as well as scat and bone samples when available. We compared mine soil concentrations to Arizona non-residential clean up levels. Hazard quotients were elevated in several mines and elevated for manganese in one Sheep Tank Mine sample. We analyzed bighorn sheep tissues for trace elements. We obtained blood, liver, and bone samples from hunter-harvested bighorn in 2000 and 2001. Arizona Game and Fish Department also collected blood from bighorn during a translocation operation in 2001. Iron and magnesium were elevated in tissues compared to reference literature concentrations in other species. Most often, domestic sheep baseline levels were used for comparison because of limited available data for bighorn sheep.
    [Show full text]
  • Brenda SEZ Analysis: Draft PEIS
    1 8 AFFECTED ENVIRONMENT AND IMPACT ASSESSMENT FOR 2 PROPOSED SOLAR ENERGY ZONES IN ARIZONA 3 4 5 8.1 BRENDA 6 7 8 8.1.1 Background and Summary of Impacts 9 10 11 8.1.1.1 General Information 12 13 The proposed Brenda Solar Energy Zone (SEZ) is located in La Paz County in west- 14 central Arizona (Figure 8.1.1.1-1), 32 mi (52 km) east of the California border. The SEZ has a 15 total area of 3,878 acres (16 km2). In 2008, the county population was 20,005, while adjacent 16 Riverside County to the west in California had a population of 2,087,917. The towns of 17 Quartzsite and Salome in La Paz County are about 18 mi (29 km) west of, and 18 mi (29 km) 18 east of, the SEZ respectively. The Phoenix metropolitan area is approximately 100 mi (161 km) 19 to the east of the SEZ, and Los Angeles is approximately 230 mi (370 km) to the west. 20 21 The nearest major road access to the SEZ is via U.S. 60, which runs southwest to 22 northeast, along the southeast border of the Brenda SEZ. The nearest railroad stop is 11 mi 23 (18 km) away. The nearest airports serving the area are the Blythe and Parker (Avi Suquilla) 24 Airports, both approximately 50 mi (80 km) from the SEZ, and neither of which have scheduled 25 commercial passenger service. The Sky Harbor Airport in Phoenix is 125 mi (201 km) to the 26 east, and Yuma International Airport in Yuma is 104 mi (167 km) to the south, of the SEZ.
    [Show full text]
  • GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA
    Volume 50, Number 5 GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA www.geosociety.org/rm-mtg Sunset Crater is a cinder cone located north of Flagstaff, Arizona, USA. Program 05-RM-cvr.indd 1 2/27/2018 4:17:06 PM Program Joint Meeting Rocky Mountain Section, 70th Meeting Cordilleran Section, 114th Meeting Flagstaff, Arizona, USA 15–17 May 2018 2018 Meeting Committee General Chair . Paul Umhoefer Rocky Mountain Co-Chair . Dennis Newell Technical Program Co-Chairs . Nancy Riggs, Ryan Crow, David Elliott Field Trip Co-Chairs . Mike Smith, Steven Semken Short Courses, Student Volunteer . Lisa Skinner Exhibits, Sponsorship . Stephen Reynolds GSA Rocky Mountain Section Officers for 2018–2019 Chair . Janet Dewey Vice Chair . Kevin Mahan Past Chair . Amy Ellwein Secretary/Treasurer . Shannon Mahan GSA Cordilleran Section Officers for 2018–2019 Chair . Susan Cashman Vice Chair . Michael Wells Past Chair . Kathleen Surpless Secretary/Treasurer . Calvin Barnes Sponors We thank our sponsors below for their generous support. School of Earth and Space Exploration - Arizona State University College of Engineering, Forestry, and Natural Sciences University of Arizona Geosciences (Arizona LaserChron Laboratory - ALC, Arizona Radiogenic Helium Dating Lab - ARHDL) School of Earth Sciences & Environmental Sustainability - Northern Arizona University Arizona Geological Survey - sponsorship of the banquet Prof . Stephen J Reynolds, author of Exploring Geology, Exploring Earth Science, and Exploring Physical Geography - sponsorship of the banquet NOTICE By registering for this meeting, you have acknowledged that you have read and will comply with the GSA Code of Conduct for Events (full code of conduct listed on page 31) .
    [Show full text]
  • Animated Tectonic Reconstruction of the Lower Colorado River Region: Implications for Late Miocene to Present Deformation Scott E
    Animated tectonic reconstruction of the Lower Colorado River region: implications for Late Miocene to Present deformation Scott E. K. Bennett,1 Michael H. Darin,2 Rebecca J. Dorsey,3 Lisa A. Skinner,2 Paul J. Umhoefer,2 and Michael E. Oskin4 1U.S. Geological Survey, 2Northern Arizona University, 3University of Oregon, 4University of California, Davis Introduction of upper crustal structures that accommodated Although the majority of late Miocene to present intracontinental strain and improves our understanding Pacic–North America plate boundary strain has been of the processes that promoted localized or diuse strain accommodated by faults of the San Andreas and Gulf during reorganization of the Pacic–North America of California systems, growing evidence of dextral shear plate boundary. east of the San Andreas Fault indicates that a component Map-view translations of crustal blocks inuence of plate boundary deformation occurred in the lower the relative motions of adjacent blocks, an approach Colorado River (LoCR) region. Large-scale tectonic adhered to in global plate-circuit models (Atwater and reconstructions across the Gulf of California and Salton Stock, 1998; 2013). us, a synthesis of the magnitude Trough (GCAST) region (Fig. 1), a ~500 km-wide and timing of horizontal strain across a broad zone zone of deformation that aected the western margin of distributed deformation can provide insight into of North America, provide important constraints on processes of strain partitioning and potential kinematic the location, timing, style, and magnitude of crustal links between adjacent structural domains. Furthermore, deformation in the LoCR region (Fig. 2). Characterizing it can help prioritize and guide future work by Miocene to present deformation in the LoCR region identifying gaps in our understanding of plate boundary is important to resolve the presence and kinematics deformation and provide a degree of predictability Figure 1.
    [Show full text]
  • Geologic Mapping in the Hieroglyphic and Wickenburg Mountains in Yavapai and Maricopa Counties; Partial Support Was Provided by the U.S
    I .. Annual Report '- Arizona Geological Survey * ,-- I I L Fiscal Year 1986 - 1987 (July 1, 1986-June 30, 1987) ARIZONA GEOLOGICAL SURVEY OPEN·FILE REPORT 1I..- 87-13 , Cover Illustration: earth fissures formed in response L to ground-water withdrawal near Chandler Heights; artwork by Peter F. Corrao. L * The Arizona Geological Survey is the Geological Survey Branch of the Bureau of Geology and Mineral Technology, a Division of the University of Arizona, Tucson. This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards Highlights • Provided information or assistance to more than 3,200 persons who visited the office, telephoned, or wrote; sold publications totalling $19,431. • Completed 36 geologic maps and reports; presented 9 technical papers and talks and gave 10 non-technical talks; conducted or participated in 5 workshops or field trips. • Published map showing land subsidence and earth-fissure zones; project was done cooperatively with the u.s. Geological Survey, U.S. Bureau of Reclamation, and the Arizona Departments of Water Resources and Transportation. • Assisted Pima County Health Department in investigating potential indoor radon occurrences in southwestern Tucson by determining location and natural radioactivity levels of a uranium-bearing limestone. • Assisted Arizona Radiation Regulatory Agency in planning a statewide indoor radon survey by providing information about the distribution of rocks that contain elevated uranium content. • Assisted State Land Department in minerals ownership exchanges by assessing potential for mineral resources in specified areas. Published bibliographies of metallic mineral districts • for Yuma, La Paz, Mohave, Pima, and Santa Cruz Counties. • Completed detailed geologic mapping in the Hieroglyphic and Wickenburg Mountains in Yavapai and Maricopa Counties; partial support was provided by the U.S.
    [Show full text]
  • Geochronology, Geology, and Listric Normal Faulting of the Vulture Mountains, Maricopa County, Arizona
    Arizona Geological Society Digest, Volume XII, 1980 89 Geochronology, Geology, and Listric Normal Faulting of the Vulture Mountains, Maricopa County, Arizona by WA. Rehrigi, M. Shafiqullah2, and P.E. Damon2 Abstract Geologic mapping and geochronologic studies in the Vulture Mountains near Wickenburg, Arizona, have led to the recognition of a large, northeast-trending batholith of 68.4-m.y. age that intrudes complex gneissic and granitic rocks of probably Precambrian age. Over- lying the denuded crystalline terrane is a sequence of late Oligocene to Miocene ( .'26 to 16 m.y.) volcanic rocks (vitrophyres, ash-flow tuffs, welded tuffs, breccias, agglomerates, and lava flows) that vary locally. Nearby source areas are suggested. A swarm of north- to north-northwest-trending porphyritic dikes intrudes the volcanics and crystalline basement. Overlying this volcanic sequence in angular unconformity is a thin section of basal conglom- erate and basalt lava flows dated at 13.5 m.y. B.P. The older, tuffaceous sequence is generally calc-alkalic but with a high proportion of rhyolites that are exceptionally rich in potassium and silica. These silicic units are peral- kaline or nearly so, and those with K20/Na2O >3 are ultrapotassic. Initial strontium ratios average 0.7081, whereas an initial ratio for the younger basalt sequence is significantly lower at 0.7054. The silicic volcanics have been severely tilted on multiple, low-angle listric normal faults. The youngest basalt flows are relatively flat lying and postdate this deformation. By geo- logic and radiometric criteria, the transition from tilted silicic volcanics to untilted basalts occurred between about 16 and 14 m.y.
    [Show full text]
  • Of Our Favorite Things
    TALON AGENTS: THE MAJESTIC ARTIST ROBERT SHIELDS: AUGUST 1909: WILDLIFE ECOLOGY BIRDS OF CAVE CREEK CANYON NOPE. HE’S NOT ALL MIME IS BORN IN THE WHITE MOUNTAINS AUGUST 2009 ESCAPE. EXPLORE. EXPERIENCE BEST ofAZ of our favorite things 100featuring BRANDON WEBB & ROGER CLYNE plus DIERKS BENTLEY: The Coolest Dude in Country Music and A Pulitzer Winner and a Camera Went Into the Catalinas … contents 08.09 features 14 BEST OF AZ Our first-ever guide to the best of everything in Arizona, from eco-friendly accommodations to secret hide- aways and margaritas. The latter, by the way, come courtesy of Roger Clyne, the Tempe-based rock star. Cy Young Award-winner Brandon Webb pitched in on this piece as well, and so did NFL referee Ed Hochuli. Grand Canyon Some of the choices you’ll agree with. Others, prob - National Park ably not. Either way, this is our take on the “Best of Flagstaff Arizona.” EDITED BY KELLY KRAMER Sedona Springerville 36 A PULITZER WINNER AND A Camp Verde Globe CAMERA WENT INTO THE CATALINAS ... PHOENIX It sounds like a joke, doesn’t it? It’s not. We just wrote departments that to get your attention. When it comes to photography, 2 EDITOR’S LETTER 3 CONTRIBUTORS 4 LETTERS TO THE EDITOR Santa Catalina Jack Dykinga is dead serious. That’s why he has a Pulitzer Mountains sitting on his mantel. Or maybe it’s shoved in a drawer — 5 THE JOURNAL www.arizonahighways.com People, places and things from around the state, that’s more Jack’s style.
    [Show full text]
  • Appendix a – Data for Sample Sites, Butler Valley Basin, 2008-2012
    ii Ambient Groundwater Quality of the Butler Valley Basin: A 2008 - 2012 Baseline Study By Douglas C. Towne Maps by Jean Ann Rodine Arizona Department of Environmental Quality Open File Report 12-06 ADEQ Water Quality Division Surface Water Section Monitoring Unit 1110 West Washington St. Phoenix, Arizona 85007-2935 Thanks: Field Assistance: Elizabeth Boettcher and Susan Determann. Special recognition is extended to the many well owners who were kind enough to give permission to collect groundwater data on their property. Photo Credits: Douglas Towne Report Cover: Situated high above Butler Valley, a stock watering trough served by Dripping Springs in the Harcuvar Mountains is stagnant because of a frozen water line. A fresh sample (BUT-3) from the spring was obtained higher up the pipeline met all water quality standards except total dissolved solids (TDS). iii Other Publications of the ADEQ Ambient Groundwater Monitoring Program ADEQ Ambient Groundwater Quality Open-File Reports (OFR) and Factsheets (FS): Butler Valley Basin OFR 12-06, 44 p. FS 12-10, 5.p. Cienega Creek Basin OFR 12-02, 46 p. FS 12-05, 4.p. Ranegras Plain Basin OFR 11-07, 63 p. FS 12-01, 4.p. Groundwater Quality in Arizona OFR 11-04, 26 p. - Bill Williams Basin OFR 11-06, 77 p. FS 12-01, 4.p. San Bernardino Valley Basin OFR 10-03, 43 p. FS 10-31, 4 p. Dripping Springs Wash Basin OFR 10-02, 33 p. FS 11-02, 4 p. McMullen Valley Basin OFR 11-02, 94 p. FS 11-03, 6 p. Gila Valley Sub-basin OFR 09-12, 99 p.
    [Show full text]
  • Orocopia Schist in the Northern Plomosa Mountains, West-Central Arizona: a Laramide Subduction Complex Exhumed in a Miocene Metamorphic Core Complex
    RESEARCH Orocopia Schist in the northern Plomosa Mountains, west-central Arizona: A Laramide subduction complex exhumed in a Miocene metamorphic core complex E.D. Strickland1, J.S. Singleton1, and G.B. Haxel2,3 1DEPARTMENT OF GEOSCIENCES, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80523, USA 2U.S. GEOLOGICAL SURVEY, FLAGSTAFF, ARIZONA 86001, USA 3GEOLOGY PROGRAM, SCHOOL OF EARTH SCIENCES AND ENVIRONMENTAL SUSTAINABILITY, NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, ARIZONA 86011, USA ABSTRACT We document field relationships, petrography, and geochemistry of a newly identified exposure of Orocopia Schist, a Laramide subduction complex, in the northern Plomosa Mountains metamorphic core complex of west-central Arizona (USA). This core complex is character- ized by pervasive mylonitic fabrics associated with early Miocene intrusions. The quartzofeldspathic Orocopia Schist records top-to-the-NE mylonitization throughout its entire ~2–3 km structural thickness and 10 km2 of exposure in the footwall of the top-to-the-NE Plomosa detachment fault. The schist of the northern Plomosa Mountains locally contains graphitic plagioclase poikiloblasts and scattered coarse- grained actinolitite pods, both of which are characteristic of the Orocopia and related schists. Actinolitite pods are high in Mg, Ni, and Cr, and are interpreted as metasomatized peridotite—an association observed in Orocopia Schist at nearby Cemetery Ridge. A 3.5-km-long unit of amphibolite with minor interlayered ferromanganiferous quartzite is localized along a SE-dipping contact between the Orocopia Schist and gneiss. Based on their lithologic and geochemical characteristics, we interpret the amphibolite and quartzite as metabasalt and meta chert, respectively. The top of the Orocopia Schist is only ~3–4 km below a ca.
    [Show full text]
  • Gold Deposits Near Quartzsite, Arizona
    GOLD DEPOSITS NEAR QUARTZSITE, ARIZONA. By EDWARD L. JONES, Jr. INTRODUCTION. This report is based on information obtained by the writer in April and May, 1914,. while he was classifying the lands in the Colorado River Indian Reservation. The area considered includes the south­ ern part of the reservation and the region extending eastward from the reservation to the Plomosa Mountains. The geology and ore deposits within the reservation were more particularly studied, the time allotted to the examination being too short to permit detailed work in the area farther east. For information concerning placers outside the reservation the writer is indebted to Mr. E. L. Du- fourcq, who conducted the testing of placer .ground near Quartz- site. Mr. W. W. McCoy, of San Bernardino, kindly furnished the early history of the La Paz district, and Mr. Edward Beggs, of Quartzsite, gave much useful information regarding the La Paz placers. In 1909 Howland Bancroft x made a geologic reconnaissance of northern Yuma County .and much of the country around Quartz- site and farther west to the reservation line. In his report he men­ tions the La Paz district and briefly describes placers in the Plomosa Mountains and prospects on gold-bearing quartz veins in the vicinity of Quartzsite. The map that accompanies the present report (PI. IV) is compiled from the records of the General Land Office. The area within the reservation has been subdivided into sections; the land east of the reservation is unsurveyed. The mountainous areas in the reserva­ tion are indicated on this map by patterns showing the geologic rock formations; the mountains in the unsurveyed area are repre­ sented approximately by hachures.
    [Show full text]