Annual Report on Ground Water in Arizona. Spring 1958 to Spring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lower Gila Region, Arizona
DEPARTMENT OF THE INTERIOR HUBERT WORK, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 498 THE LOWER GILA REGION, ARIZONA A GEOGBAPHIC, GEOLOGIC, AND HTDBOLOGIC BECONNAISSANCE WITH A GUIDE TO DESEET WATEEING PIACES BY CLYDE P. ROSS WASHINGTON GOVERNMENT PRINTING OFFICE 1923 ADDITIONAL COPIES OF THIS PUBLICATION MAT BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 50 CENTS PEE COPY PURCHASER AGREES NOT TO RESELL OR DISTRIBUTE THIS COPT FOR PROFIT. PUB. RES. 57, APPROVED MAT 11, 1822 CONTENTS. I Page. Preface, by O. E. Melnzer_____________ __ xr Introduction_ _ ___ __ _ 1 Location and extent of the region_____._________ _ J. Scope of the report- 1 Plan _________________________________ 1 General chapters _ __ ___ _ '. , 1 ' Route'descriptions and logs ___ __ _ 2 Chapter on watering places _ , 3 Maps_____________,_______,_______._____ 3 Acknowledgments ______________'- __________,______ 4 General features of the region___ _ ______ _ ., _ _ 4 Climate__,_______________________________ 4 History _____'_____________________________,_ 7 Industrial development___ ____ _ _ _ __ _ 12 Mining __________________________________ 12 Agriculture__-_______'.____________________ 13 Stock raising __ 15 Flora _____________________________________ 15 Fauna _________________________ ,_________ 16 Topography . _ ___ _, 17 Geology_____________ _ _ '. ___ 19 Bock formations. _ _ '. __ '_ ----,----- 20 Basal complex___________, _____ 1 L __. 20 Tertiary lavas ___________________ _____ 21 Tertiary sedimentary formations___T_____1___,r 23 Quaternary sedimentary formations _'__ _ r- 24 > Quaternary basalt ______________._________ 27 Structure _______________________ ______ 27 Geologic history _____ _____________ _ _____ 28 Early pre-Cambrian time______________________ . -
Curriculum Vita - Stephen J
Curriculum Vita - Stephen J. Reynolds School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404 (480) 965-9049 (work) Website: http://reynolds.asu.edu email: [email protected] Degrees/Registration University of Texas, El Paso: B.S., Geology, 1974 University of Arizona: M.S., Geosciences, 1977, Ph.D., Geosciences,1982 Arizona Registered Geologist #26773 (1993-present) Recent Professional Experience Arizona State University, Dept. of Geology: Professor (6/97 to present), Associate Professor (8/91 to 6/97). Teaching responsibilities include Advanced Geologic Field Mapping, Advanced Structural Geology, Applied Arizona Geology, Cordilleran Regional Geology, Geology of Arizona, Geotectonics, Introductory Geology, Orogenic Systems, Summer Field Geology, Methods of Geoscience Teaching ASU Center for Research on Education in Science, Mathematics, Engineering, and Technology, Associate Director (6/99 to present); chairman of founding committee. Arizona Geological Survey and Arizona Bureau of Geology and Mineral Technology: Research Geologist (6/88 to 7/91), Associate Research Geologist (6/87 to 6/88); Assistant Research Geologist (2/81 to 6/87). University of Arizona, Dept. of Geosciences: Visiting Associate Professor, (1991 to ~1997); Adjunct Associate Research Scientist (1987 to 1991); Research Associate and Assistant (1/75 to 12/80); Teaching Assistant (8/74 to 7/75) Geologist and Consulting Geologist: Clients include Animas Resources (2007 to present), Pediment Exploration, Ltd. (2007 to present), Clear Creek -
Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona
2.SOB nH in ntoiOGIGM. JAN 3 1 1989 Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona U.S. GEOLOGICAL SURVEY BULLETIN 1701-C Chapter C Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona By ED DE WITT, S.M. RICHARD, J.R. HASSEMER, and W.F. HANNA U.S. Geological Survey J.R. THOMPSON U.S. Bureau of Mines U.S. GEOLOGICAL SURVEY BULLETIN 1701 MINERAL RESOURCES OF WILDERNESS STUDY AREAS- WEST-CENTRAL ARIZONA AND PART OF SAN BERNARDINO COUNTY, CALIFORNIA U. S. GEOLOGICAL SURVEY Dallas L Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1988 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publlcatlon Data Mineral resources of the Harquahala Mountains wilderness study area, La Paz and Maricopa counties, Arizona. (Mineral resources of wilderness study areas west-central Arizona and part of San Bernardino County, California ; ch. C) (U.S. Geological Survey bulletin ; 1701-C) Bibliography: p. Supt. of Docs, no.: I 19.3:1701-C 1. Mines and mineral resources Arizona Harquahala Mountains Wilderness. 2. Harquahala Mountains (Ariz.) I. DeWitt, Ed. II. Series. III. Series: U.S. Geological Survey bulletin ; 1701. QE75.B9 no. 1701-C 557.3 s [553'.09791'72] 88-600012 [TN24.A6] STUDIES RELATED TO WILDERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S. -
Department of the Interior U.S
DEPARTMENT OF THE INTERIOR U.S. FISH AND WILDLIFE SERVICE REGION 2 DIVISION OF ENVIRONMENTAL CONTAMINANTS CONTAMINANTS IN BIGHORN SHEEP ON THE KOFA NATIONAL WIL DLIFE REFUGE, 2000-2001 By Carrie H. Marr, Anthony L. Velasco1, and Ron Kearns2 U.S. Fish and Wildlife Service Arizona Ecological Services Office 2321 W. Royal Palm Road, Suite 103 Phoenix, Arizona 85021 August 2004 2 ABSTRACT Soils of abandoned mines on the Kofa National Wildlife Refuge (KNWR) are contaminated with arsenic, barium, mercury, manganese, lead, and zinc. Previous studies have shown that trace element and metal concentrations in bats were elevated above threshold concentrations. High trace element and metal concentrations in bats suggested that bighorn sheep also may be exposed to these contaminants when using abandoned mines as resting areas. We found evidence of bighorn sheep use, bighorn sheep carcasses, and scat in several abandoned mines. To determine whether bighorn sheep are exposed to, and are accumulating hazardous levels of metals while using abandoned mines, we collected soil samples, as well as scat and bone samples when available. We compared mine soil concentrations to Arizona non-residential clean up levels. Hazard quotients were elevated in several mines and elevated for manganese in one Sheep Tank Mine sample. We analyzed bighorn sheep tissues for trace elements. We obtained blood, liver, and bone samples from hunter-harvested bighorn in 2000 and 2001. Arizona Game and Fish Department also collected blood from bighorn during a translocation operation in 2001. Iron and magnesium were elevated in tissues compared to reference literature concentrations in other species. Most often, domestic sheep baseline levels were used for comparison because of limited available data for bighorn sheep. -
Brenda SEZ Analysis: Draft PEIS
1 8 AFFECTED ENVIRONMENT AND IMPACT ASSESSMENT FOR 2 PROPOSED SOLAR ENERGY ZONES IN ARIZONA 3 4 5 8.1 BRENDA 6 7 8 8.1.1 Background and Summary of Impacts 9 10 11 8.1.1.1 General Information 12 13 The proposed Brenda Solar Energy Zone (SEZ) is located in La Paz County in west- 14 central Arizona (Figure 8.1.1.1-1), 32 mi (52 km) east of the California border. The SEZ has a 15 total area of 3,878 acres (16 km2). In 2008, the county population was 20,005, while adjacent 16 Riverside County to the west in California had a population of 2,087,917. The towns of 17 Quartzsite and Salome in La Paz County are about 18 mi (29 km) west of, and 18 mi (29 km) 18 east of, the SEZ respectively. The Phoenix metropolitan area is approximately 100 mi (161 km) 19 to the east of the SEZ, and Los Angeles is approximately 230 mi (370 km) to the west. 20 21 The nearest major road access to the SEZ is via U.S. 60, which runs southwest to 22 northeast, along the southeast border of the Brenda SEZ. The nearest railroad stop is 11 mi 23 (18 km) away. The nearest airports serving the area are the Blythe and Parker (Avi Suquilla) 24 Airports, both approximately 50 mi (80 km) from the SEZ, and neither of which have scheduled 25 commercial passenger service. The Sky Harbor Airport in Phoenix is 125 mi (201 km) to the 26 east, and Yuma International Airport in Yuma is 104 mi (167 km) to the south, of the SEZ. -
GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA
Volume 50, Number 5 GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA www.geosociety.org/rm-mtg Sunset Crater is a cinder cone located north of Flagstaff, Arizona, USA. Program 05-RM-cvr.indd 1 2/27/2018 4:17:06 PM Program Joint Meeting Rocky Mountain Section, 70th Meeting Cordilleran Section, 114th Meeting Flagstaff, Arizona, USA 15–17 May 2018 2018 Meeting Committee General Chair . Paul Umhoefer Rocky Mountain Co-Chair . Dennis Newell Technical Program Co-Chairs . Nancy Riggs, Ryan Crow, David Elliott Field Trip Co-Chairs . Mike Smith, Steven Semken Short Courses, Student Volunteer . Lisa Skinner Exhibits, Sponsorship . Stephen Reynolds GSA Rocky Mountain Section Officers for 2018–2019 Chair . Janet Dewey Vice Chair . Kevin Mahan Past Chair . Amy Ellwein Secretary/Treasurer . Shannon Mahan GSA Cordilleran Section Officers for 2018–2019 Chair . Susan Cashman Vice Chair . Michael Wells Past Chair . Kathleen Surpless Secretary/Treasurer . Calvin Barnes Sponors We thank our sponsors below for their generous support. School of Earth and Space Exploration - Arizona State University College of Engineering, Forestry, and Natural Sciences University of Arizona Geosciences (Arizona LaserChron Laboratory - ALC, Arizona Radiogenic Helium Dating Lab - ARHDL) School of Earth Sciences & Environmental Sustainability - Northern Arizona University Arizona Geological Survey - sponsorship of the banquet Prof . Stephen J Reynolds, author of Exploring Geology, Exploring Earth Science, and Exploring Physical Geography - sponsorship of the banquet NOTICE By registering for this meeting, you have acknowledged that you have read and will comply with the GSA Code of Conduct for Events (full code of conduct listed on page 31) . -
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012 (Photographs: Arizona Game and Fish Department) Arizona Game and Fish Department In partnership with the Arizona Wildlife Linkages Workgroup TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................................ i RECOMMENDED CITATION ........................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................................. ii EXECUTIVE SUMMARY ................................................................................................................ iii DEFINITIONS ................................................................................................................................ iv BACKGROUND ................................................................................................................................ 1 THE MARICOPA COUNTY WILDLIFE CONNECTIVITY ASSESSMENT ................................... 8 HOW TO USE THIS REPORT AND ASSOCIATED GIS DATA ................................................... 10 METHODS ..................................................................................................................................... 12 MASTER LIST OF WILDLIFE LINKAGES AND HABITAT BLOCKSAND BARRIERS ................ 16 REFERENCE MAPS ....................................................................................................................... -
Animated Tectonic Reconstruction of the Lower Colorado River Region: Implications for Late Miocene to Present Deformation Scott E
Animated tectonic reconstruction of the Lower Colorado River region: implications for Late Miocene to Present deformation Scott E. K. Bennett,1 Michael H. Darin,2 Rebecca J. Dorsey,3 Lisa A. Skinner,2 Paul J. Umhoefer,2 and Michael E. Oskin4 1U.S. Geological Survey, 2Northern Arizona University, 3University of Oregon, 4University of California, Davis Introduction of upper crustal structures that accommodated Although the majority of late Miocene to present intracontinental strain and improves our understanding Pacic–North America plate boundary strain has been of the processes that promoted localized or diuse strain accommodated by faults of the San Andreas and Gulf during reorganization of the Pacic–North America of California systems, growing evidence of dextral shear plate boundary. east of the San Andreas Fault indicates that a component Map-view translations of crustal blocks inuence of plate boundary deformation occurred in the lower the relative motions of adjacent blocks, an approach Colorado River (LoCR) region. Large-scale tectonic adhered to in global plate-circuit models (Atwater and reconstructions across the Gulf of California and Salton Stock, 1998; 2013). us, a synthesis of the magnitude Trough (GCAST) region (Fig. 1), a ~500 km-wide and timing of horizontal strain across a broad zone zone of deformation that aected the western margin of distributed deformation can provide insight into of North America, provide important constraints on processes of strain partitioning and potential kinematic the location, timing, style, and magnitude of crustal links between adjacent structural domains. Furthermore, deformation in the LoCR region (Fig. 2). Characterizing it can help prioritize and guide future work by Miocene to present deformation in the LoCR region identifying gaps in our understanding of plate boundary is important to resolve the presence and kinematics deformation and provide a degree of predictability Figure 1. -
Maricopa County Regional Trail System Plan
Maricopa County Regional Trail System Plan Adopted August 16, 2004 Maricopa Trail Maricopa County Trail Commission Maricopa County Department of Transportation Maricopa County Parks and Recreation Maricopa County Planning and Development Flood Control District of Maricopa County We have an obligation to protect open spaces for future generations. Maricopa County Regional Trail System Plan VISION Our vision is to connect the majestic open spaces of the Maricopa County Regional Parks with a nonmotorized trail system. The Maricopa Trail Maricopa County Regional Trail System Plan - page 1 Credits Maricopa County Board of Supervisors Andrew Kunasek, District 3, Chairman Fulton Brock, District 1 Don Stapley, District 2 Max Wilson, District 4 Mary Rose Wilcox, District 5 Maricopa County Trail Commission Supervisor Max Wilson, District 4 Chairman Supervisor Andrew Kunasek, District 3 Parks Commission Members: Citizen Members: Laurel Arndt, Chair Art Wirtz, District 2 Randy Virden, Vice-Chair Jim Burke, District 3 Felipe Zubia, District 5 Stakeholders: Carol Erwin, Bureau of Reclamation (BOR) Fred Pfeifer, Arizona Public Service (APS) James Duncan, Salt River Project (SRP) Teri Raml, Bureau of Land Management (BLM) Ex-officio Members: William Scalzo, Chief Community Services Officer Pictured from left to right Laurel Arndt, Supervisor Andy Kunasek, Fred Pfeifer, Carol Erwin, Arizona’s Official State Historian, Marshall Trimble, and Art Wirtz pose with the commemorative branded trail marker Mike Ellegood, Director, Public Works at the Maricopa Trail -
Ironwood Forest National Monument Resources Summary
Natural Resources Summary (5/2017) Ironwood Forest National Monument Geology & Cultural History of Ironwood Forest National Monument-IFNM, Southern Arizona ____________________________________ INFM Parameters • Established 9 June 2000 - Exe. Order President W.J. Clinton • Land Mangement: Bureau of Land Management • Footprint: 188,619 acres (includes 59,922 acres non-federal lands, chiefly State Trust lands, and minor private holdings) • Cultural features: 200+ Hohokam sites; historical mine-related sites • Current Uses: Recreation, cattle grazing, mining on pre-existing mine sites • Threatened Species: Ferruginous pygmy owl, desert bighorn sheep, lesser long-nosed bat, turk’s head cactus Physiographic Features Basin & Range Province, Roskruge Mtns., Samaniego Hills, Sawtooth Mtns., Silver Bell Mtns., Sonoran Desert, Western Silver Bell Mtns. Mining History • Predominantly in the Silver Bell Mtns. • Major Ore Deposit(s) type: porphyry copper • Ore: copper, lead, zinc, molybdenum, gold Map of the Ironwood Forest National Monument (BLM). The IFNM surrounds and partially encompasses the Silver Bell metallic mineral district and either covers parts of or encompasses the Waterman, Magonigal and the Roskruge mineral districts. The most productive area has been the Silver Bell Mining District, where active mining continues to this day, immediately southwest of the monument, and by grandfather clause, on the the monument proper. The Silver Bell Mmining District evolved from a collection of intermittent, poorly financed and managed underground mining operations in the late 1800s to mid-1900s struggling to make a profit from high grade ores; to a small but profitable producer, deploying innovative mining practices and advancements in technology to Mineral Districts of eastern Pima County. Yellow highlighted successfully develop the district’s large, low-grade copper resource districts are incorporated in part or entirely in IFNM (AZGS (D. -
Reintroduction of the Tarahumara Frog (Rana Tarahumarae) in Arizona: Lessons Learned
Herpetological Conservation and Biology 15(2):372–389. Submitted: 12 December 2019; Accepted: 11 June 2020; Published: 31 August 2020. REINTRODUCTION OF THE TARAHUMARA FROG (RANA TARAHUMARAE) IN ARIZONA: LESSONS LEARNED JAMES C. RORABAUGH1,8, AUDREY K. OWENS2, ABIGAIL KING3, STEPHEN F. HALE4, STEPHANE POULIN5, MICHAEL J. SREDL6, AND JULIO A. LEMOS-ESPINAL7 1Post Office Box 31, Saint David, Arizona 85630, USA 2Arizona Game and Fish Department, 5000 West Carefree Highway, Phoenix, Arizona 85086, USA 3Jack Creek Preserve Foundation, Post Office Box 3, Ennis, Montana 59716, USA 4EcoPlan Associates, Inc., 3610 North Prince Village Place, Suite 140, Tucson, Arizona 85719, USA 5Arizona-Sonora Desert Museum, 2021 North Kinney Road, Tucson, Arizona 85743, USA 6Arizona Game and Fish Department (retired), 5000 West Carefree Highway, Phoenix, Arizona 85086, USA 7Laboratorio de Ecología, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Avenida De Los Barrios No. 1, Colonia Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, México 8Corresponding author, e-mail: [email protected] Abstract.—The Tarahumara Frog (Rana tarahumarae) disappeared from the northern edge of its range in south- central Arizona, USA, after observed declines and die-offs from 1974 to 1983. Similar declines were noted in Sonora, Mexico; however, the species still persists at many sites in Mexico. Chytridiomycosis was detected during some declines and implicated in others; however, airborne pollutants from copper smelters, predation, competition, and extreme weather may have also been contributing factors. We collected Tarahumara Frogs in Sonora for captive rearing and propagation beginning in 1999, and released frogs to two historical localities in Arizona, including Big Casa Blanca Canyon and vicinity, Santa Rita Mountains, and Sycamore Canyon, Atascosa Mountains. -
Geologic Mapping in the Hieroglyphic and Wickenburg Mountains in Yavapai and Maricopa Counties; Partial Support Was Provided by the U.S
I .. Annual Report '- Arizona Geological Survey * ,-- I I L Fiscal Year 1986 - 1987 (July 1, 1986-June 30, 1987) ARIZONA GEOLOGICAL SURVEY OPEN·FILE REPORT 1I..- 87-13 , Cover Illustration: earth fissures formed in response L to ground-water withdrawal near Chandler Heights; artwork by Peter F. Corrao. L * The Arizona Geological Survey is the Geological Survey Branch of the Bureau of Geology and Mineral Technology, a Division of the University of Arizona, Tucson. This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards Highlights • Provided information or assistance to more than 3,200 persons who visited the office, telephoned, or wrote; sold publications totalling $19,431. • Completed 36 geologic maps and reports; presented 9 technical papers and talks and gave 10 non-technical talks; conducted or participated in 5 workshops or field trips. • Published map showing land subsidence and earth-fissure zones; project was done cooperatively with the u.s. Geological Survey, U.S. Bureau of Reclamation, and the Arizona Departments of Water Resources and Transportation. • Assisted Pima County Health Department in investigating potential indoor radon occurrences in southwestern Tucson by determining location and natural radioactivity levels of a uranium-bearing limestone. • Assisted Arizona Radiation Regulatory Agency in planning a statewide indoor radon survey by providing information about the distribution of rocks that contain elevated uranium content. • Assisted State Land Department in minerals ownership exchanges by assessing potential for mineral resources in specified areas. Published bibliographies of metallic mineral districts • for Yuma, La Paz, Mohave, Pima, and Santa Cruz Counties. • Completed detailed geologic mapping in the Hieroglyphic and Wickenburg Mountains in Yavapai and Maricopa Counties; partial support was provided by the U.S.